MATERIAL COMPUESTO PARA ALMACENAMIENTO DE ENERGIA TERMICA A ALTA TEMPERATURA.

Material compuesto para almacenamiento de energía térmica a alta temperatura (225 a 488ºC) formado por una estructura de carbono porosa al menos parcialmente llena con LiOH/KOH en la que una gran cantidad de energía térmica puede almacenarse o liberarse muy rápidamente.

La estructura de carbono se caracteriza por una alta conductividad térmica volumétrica, una baja densidad, una porosidad altamente interconectada y un módulo de elasticidad relativamente alto. Las propiedades notables de las mezclas LiOH/KOH son una gran cantidad de energía implicada en la fusión/cristalización completa, una expansión de volumen relativo bastante baja cuando se funde y una sub-refrigeración bastante baja. Las principales ventajas de los compuestos resultantes son una densidad energética muy alta, una expansión de volumen relativamente baja, una transferencia de calor altamente potenciada, termoadaptabilidad, estabilidad e histéresis insignificante

Tipo: Patente de Invención. Resumen de patente/invención. Número de Solicitud: P200901423.

Solicitante: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.

Nacionalidad solicitante: España.

Provincia: SEVILLA.

Inventor/es: PALOMO DEL BARRIO,ELENA, BEN KHEMIS,SABRI, MOURAND,DAVID, NOEL,FREDERIC, HO-KON-TIAT,VANESSA, DAUVERGE,JEAN-LUC, ANGUY,YANNICK, PRIETO RIOS,CRISTINA, JOVE LLOVERA,ALEIX.

Fecha de Solicitud: 16 de Junio de 2009.

Fecha de Publicación: .

Fecha de Concesión: 23 de Enero de 2012.

Clasificación Internacional de Patentes:

  • C04B35/52 QUIMICA; METALURGIA.C04 CEMENTOS; HORMIGON; PIEDRA ARTIFICIAL; CERAMICAS; REFRACTARIOS.C04B LIMA; MAGNESIA; ESCORIAS; CEMENTOS; SUS COMPOSICIONES, p. ej. MORTEROS, HORMIGON O MATERIALES DE CONSTRUCCION SIMILARES; PIEDRA ARTIFICIAL; CERAMICAS (vitrocerámicas desvitrificadas C03C 10/00 ); REFRACTARIOS (aleaciones basadas en metales refractarios C22C ); TRATAMIENTO DE LA PIEDRA NATURAL. › C04B 35/00 Productos cerámicos modelados, caracterizados por su composición; Composiciones cerámicas (que contienen un metal libre, de forma distinta que como agente de refuerzo macroscópico, unido a los carburos, diamante, óxidos, boruros, nitruros, siliciuros, p. ej. cermets, u otros compuestos de metal, p. ej. oxinitruros o sulfuros, distintos de agentes macroscópicos reforzantes C22C ); Tratamiento de polvos de compuestos inorgánicos previamente a la fabricación de productos cerámicos. › a base de carbono, p. ej. grafito.
  • C09K5/06B

Clasificación PCT:

  • C01B31/02
  • C04B35/52 C04B 35/00 […] › a base de carbono, p. ej. grafito.
  • C04B41/81 C04B […] › C04B 41/00 Postratamiento de morteros, hormigón, piedra artificial; Tratamiento de la piedra natural (vidriados distintos a los vidirados en frio C03C 8/00). › Revestimiento o impregnación.
  • C09K5/02 C […] › C09 COLORANTES; PINTURAS; PULIMENTOS; RESINAS NATURALES; ADHESIVOS; COMPOSICIONES NO PREVISTAS EN OTRO LUGAR; APLICACIONES DE LOS MATERIALES NO PREVISTAS EN OTRO LUGAR.C09K SUSTANCIAS PARA APLICACIONES NO PREVISTAS EN OTRO LUGAR; APLICACIONES DE SUSTANCIAS NO PREVISTAS EN OTRO LUGAR.C09K 5/00 Transferencia de calor, materiales intercambiadores de calor o para almacenar calor, p.ej. refrigerantes; materiales productores de calor o frío mediante reacciones químicas diferentes de la combustión. › Materiales sometidos a un cambio en su estado físico cuando se utilizan (C09K 5/16, C09K 5/20 tienen prioridad).

PDF original: ES-2362518_B1.pdf

 


Fragmento de la descripción:

Material compuesto para almacenamiento de energía térmica a alta temperatura.

Sector técnico de la invención La presente invención se refiere a nuevos materiales de cambio de fase para almacenamiento de energía térmica a alta temperatura (>200ºC) . Son el resultado de llenar una estructura de carbono porosa con un material de cambio de fase de alta densidad energética. La función del material de cambio de fase es almacenar o liberar energía térmica en un intervalo de temperatura elegido, mientras que el carbono sirve para potenciar la transferencia de calor.

Antecedentes de la invención Actualmente hay muchas aplicaciones que requieren el almacenamiento de una gran cantidad de calor a alta temperatura. En el sector industrial la recuperación, almacenamiento y reutilización del calor residual podría desempeñar un papel importante para un uso eficaz y económico de la energía.

En la generación de energía basada en técnicas de conversión convencionales (es decir, plantas eléctricas de gas o aceite) , el almacenamiento de calor podría ser una manera útil para mejorar la eficacia y recuperación de éste, así como para reducir la energía nominal requerida para ajustarse a picos de carga.

En cuanto a las energías renovables, debido al aumento de la cantidad de electricidad generada mediante estas fuentes han comenzado a surgir considerables problemas de estabilidad de la red, ya que dependen de la disponibilidad del recurso, por ejemplo, las plantas solares eléctricas actuales cesan su operación por la noche, por lo que la integración del almacenamiento de la energía térmica evitaría los problemas de estabilidad de la red y alargar el periodo de suministro de energía, lo que contribuye a una comercialización satisfactoria de estas tecnologías.

Por otra parte, para plantas térmicas solares autónomas en parques eléctricos remotos o aislados, el almacenamiento de energía es un elemento clave para maximizar el factor de capacidad y asegurar la disponibilidad. El almacenamiento térmico a alta temperatura podría usarse también para aumentar la eficacia en la co-generación.

Otro campo de aplicación de los nuevos materiales de cambio de fase propuestos podría ser la protección térmica para dispositivos electrónicos de alta energía. En el campo aeroespacial, podrían usarse como un sumidero de calor para evitar el sobrecalentamiento de los satélites durante las órbitas cíclicas, así como para evitar el sobrecalentamiento de los bordes delanteros de los vehículos espaciales durante la reentrada. También en los sistemas de freno para la industria aeronáutica y suavizando los picos de temperatura en las reacciones exotérmicas, para la industria química, serían sectores posibles para los que se requiere una protección térmica importante.

A pesar del interés, se encuentran muy pocos o ningún sistema comercial de almacenamiento de energía térmica a alta temperatura. La razón principal es el aún alto coste de inversión de las tecnologías existentes, que conduce a sistemas que no son económicos.

Un aspecto esencial para conseguir una reducción de costes significativa, es en los sistemas de almacenamiento, el desarrollo de materiales de bajo coste que sean estables a largo plazo y que satisfagan los requisitos energéticos del almacenamiento en las plantas y que evitan el sobredimensionado de la unidad de almacenamiento.

Las realizaciones existentes se basan típicamente en sistemas de almacenamiento de calor sensible usando líquidos (es decir, aceites, sales fundidas) o sólidos (es decir, metales, cerámicos, piedras, hormigón) como medio de almacenamiento. Los líquidos predominan en aplicaciones dentro del intervalo de 150 a 400ºC y los sólidos en el intervalo de temperatura más allá de 500/600ºC. Para estos sólidos las densidades de energía varían de 1500-3000 kJ/ (m3·K) y los costes de inversión varían de 30 e/kWh, para el hormigón, a 400 e/kWh, para los materiales cerámicos.

Para reducir los costes de inversión, el conseguir un recipiente compacto es un punto clave en estos sistemas, debido a que una parte significativa del coste del almacenamiento generalmente se debe a los cambiadores de calor, los receptáculos y el aislamiento térmico.

El almacenamiento de calor se basa en materiales de cambio de fase (tecnología de calor latente) que muestran un alto potencial para el desarrollo de sistemas de almacenamiento eficaces y económicos, especialmente para aplicaciones que usan fluidos que experimentan un proceso a temperatura constante, como puede ser el vapor húmedo durante la condensación o evaporación. La mayor ventaja de los materiales de cambio de fase es su capacidad para almacenar/liberar una gran cantidad de calor en un estrecho intervalo de temperatura durante los cambios de fase.

Dentro de ellos, las sales se han identificado como candidatos potenciales para el desarrollo de sistemas de almacenamiento de calor latente eficaces y económicos. La energía o calor latente implicada en la fusión/cristalización de las sales normalmente está dentro del intervalo de 100-1000 kJ/kg (0, 2-2 GJ/m3) , valores que generalmente aumentan con la temperatura de fusión de las sales.

Comparado con las tecnologías de calor sensible, la tecnología de almacenamiento de calor de cambio de fase con sales, hace que el volumen de los sistemas se reduzca significativamente (normalmente más de 10 veces) con lo que se evita el sobredimensionado del intercambiador de calor. Sin embargo, las bajas conductividades térmicas de las sales (< 1 W/m/K) son un factor limitante para satisfacer los requisitos de energía de las aplicaciones industriales pretendidas.

A baja temperatura, se han propuesto y ensayado diferentes maneras para aumentar la conductividad térmica de los materiales de cambio de fase, principalmente ceras de parafina. El uso de cargas metálicas tales como aditivos de aluminio o cobre, espumas metálicas o aletas, son las soluciones más antiguas. Se encontró que con estos aditivos el tiempo de carga y descarga del sistema de almacenamiento se reducía significativamente. Sin embargo, estas cargas metálicas añadían un peso y un coste significativo a los sistemas de almacenamiento añadiendo además el peligro de que podía aparecer corrosión.

Las ceras de parafina soportadas dentro de una estructura porosa de un catalizador de sílice o de carbono activado, son vías alternativas interesantes a las cargas de metálicas debido a su baja densidad.

Algunos autores han propuesto técnicas de potenciación de la conductividad basándose en aditivos de grafito y espumas de grafito saturadas con o en materiales de cambio de fase (PCM Phase Change Material) .

Las patentes WO98/04644, FR2715719A1, US7316262B1 y US6399149B1 están relacionadas también con estructuras porosas (espumas metálicas o de carbono, fibras de carbono) rellenas con materiales de cambio de fase (PCM) que funden a baja temperatura.

En cuanto a la investigación de sistemas de almacenamiento de energía térmica para alta temperatura es muy reciente y principalmente se resuelve a base de sales cuya conductividad se potencia usando grafito. Las razones principales para elegir grafito son su gran resistencia a la corrosión y al ataque químico, su conductividad térmica muy alta y su bajo coste.

En el marco del proyecto DISTOR (Energy Storage for Direct Steam Solar Power Plants) , llevado a cabo en la Plataforma Solar de Almería, la viabilidad de las técnicas de potenciación de la conductividad basadas en sistemas sin grafito se ha probado con KNO3/NaNO3 (50% en moles) para aplicaciones a 225ºC. Se han investigado dos rutas de elaboración principales: dispersión de las partículas de grafito en una sal fundida y micro-encapsulación por compresión en frío (uniaxial e isostática) de una mezcla de grafito natural expandido y sales en polvo.

Se han realizado desarrollos similares usando esta vez sales como KNO3/NaNO3, Li-NO3, NaNO3/NaCl, KNO3, LiCO3/Na2CO3 y LiBr, que funden a 225, 252, 295, 337, 493, y 546ºC respectivamente.

La patente de Estados Unidos US6399149B1 se refiere a estructuras de carbono porosas llenas con materiales con cambio de fase y revestidas para formar un producto que actúa como sumidero de calor. Sin embargo, para aplicación a alta temperatura, sólo se han considerado los materiales con cambio de fase con transición sólido-líquido por debajo de 1800ºC o 1200ºC pero que permanecen en estado líquido hasta una temperatura... [Seguir leyendo]

 


Reivindicaciones:

1. Material compuesto para almacenamiento de energía térmica a alta temperatura caracterizado porque se compone de una estructura de carbono porosa que se rellena al menos parcialmente con LiOH/KOH.

2. Material compuesto para almacenamiento de energía térmica a alta temperatura según reivindicación 1 caracterizado porque la estructura de carbono es espuma de grafito.

3. Material compuesto para almacenamiento de energía térmica a alta temperatura según reivindicación 1 caracterizado porque la estructura de carbono es espuma de carbono vítreo.

4. Material compuesto para almacenamiento de energía térmica a alta temperatura según reivindicación 1 caracterizado porque la estructura de carbono es en forma de panal.

5. Material compuesto para almacenamiento de energía térmica a alta temperatura según reivindicación 1 caracterizado porque la estructura de carbono está hecha de fibras de carbono.

6. Material compuesto para almacenamiento de energía térmica a alta temperatura según reivindicación 1 caracterizado porque la estructura de carbono está hecha de nanotubos.

7. Procedimiento de fabricación del material compuesto descrito en las reivindicaciones anteriores caracterizado porque el llenado de la sal en la estructura de carbono se realiza por condensación de vapor de LiOH/KOH.

8. Procedimiento de fabricación del material compuesto descrito en las reivindicaciones anteriores caracterizado porque el llenado de la sal en la estructura de carbono se realiza por chorro de aire con partículas de LiOH/KOH.

9. Procedimiento de fabricación del material compuesto descrito en las reivindicaciones anteriores caracterizado porque el llenado de la sal en la estructura de carbono se realiza mediante técnicas de infiltración usando vacío.


 

Patentes similares o relacionadas:

Construcción mejorada de batería de plomo-ácido, del 11 de Diciembre de 2019, de Arcactive Limited: Una batería o celda de plomo-ácido que incluye al menos un electrodo que comprende como colector de corriente no compuesto un material de fibra de carbono, y una […]

Imagen de 'Método para la fabricación de muelas abrasivas'Método para la fabricación de muelas abrasivas, del 27 de Noviembre de 2019, de TYROLIT SCHLEIFMITTELWERKE SWAROVSKI K.G.: Procedimiento para fabricar muelas abrasivas , caracterizado por las sucesivas etapas de procedimiento: i. proporcionar una mezcla de partida de al menos […]

Cuerpo de diamante policristalino, método de fabricación del mismo y herramienta, del 16 de Octubre de 2019, de SUMITOMO ELECTRIC INDUSTRIES, LTD.: Un cuerpo de diamante policristalino conteniendo al menos uno seleccionado del grupo que consta de una sustancia simple de al menos un elemento cuyo sulfuro o cloruro […]

Material de revestimiento de fricción, del 21 de Agosto de 2019, de Schunk Carbon Technology GmbH: Material de revestimiento de fricción con un cuerpo poroso, que está fabricado de modo tal que se comprime un coque de petróleo y una mezcla que […]

Procedimiento para producir una pieza conformada de un material carbonoso utilizando fibras de carbono recicladas, del 23 de Enero de 2019, de SHOWA DENKO CARBON Germany GmbH: Procedimiento para producir una pieza conformada de carbono que contiene fibras de carbono en una cantidad inferior a 20% en peso, que comprende […]

Construcción mejorada de batería de plomo-ácido, del 21 de Septiembre de 2018, de Arcactive Limited: Una batería o celda de plomo-ácido que incluye: al menos un electrodo que comprende como colector de corriente no compuesto un material de […]

Partículas compuestas de carbono-carbono, su preparación y uso de estas como electrodo negativo en baterías de iones de Li, del 7 de Febrero de 2018, de HYDRO-QUEBEC: Un método para preparar un material compuesto de partículas de un carbono de cristalinidad elevada y un carbono de cristalinidad baja, donde: - el carbono […]

Material compuesto estratificado para uso en una batería de flujo redox, del 23 de Agosto de 2017, de SGL Carbon SE: Material compuesto estratificado , en particular para uso en una batería de flujo redox, en el que el material compuesto estratificado contiene al menos una capa […]

Utilizamos cookies para mejorar nuestros servicios y mostrarle publicidad relevante. Si continua navegando, consideramos que acepta su uso. Puede obtener más información aquí. .