Polipéptidos de Campylobacter y sus métodos de uso.

Una composición obtenible por un proceso que comprende:

proporcionar un cultivo comprendiendo un Campylobacter jejuni,

en donde la Campylobacter jejuni ha sidoadaptada para desarrollo en condiciones bajas de hierro añadiendo 10 μg/ml de 2,2'-dipiridilo al medio, yaumentando gradualmente la concentración a 20 μg/ml e incubada en condiciones bajas de hierro;

romper la Campylobacter spp. para dar como resultado una mezcla comprendiendo membranas celularesrotas;

solubilizar la mezcla añadiendo a la mezcla un detergente biológico para dar como resultado una preparacióncomprendiendo proteínas solubilizadas y no solubilizadas; y

aislar los polipéptiods insolubilizados regulados por hierro.

Tipo: Patente Internacional (Tratado de Cooperación de Patentes). Resumen de patente/invención. Número de Solicitud: PCT/US2004/030873.

Solicitante: EPITOPIX, LLC.

Nacionalidad solicitante: Estados Unidos de América.

Dirección: 3735 COUNTY ROAD 5 WILLMAR, MN 56201 ESTADOS UNIDOS DE AMERICA.

Inventor/es: EMERY, DARYLL, A., STRAUB, DARREN, E..

Fecha de Publicación: .

Clasificación Internacional de Patentes:

  • C07K14/205 QUIMICA; METALURGIA.C07 QUIMICA ORGANICA.C07K PEPTIDOS (péptidos que contienen β -anillos lactamas C07D; ipéptidos cíclicos que no tienen en su molécula ningún otro enlace peptídico más que los que forman su ciclo, p. ej. piperazina diones-2,5, C07D; alcaloides del cornezuelo del centeno de tipo péptido cíclico C07D 519/02; proteínas monocelulares, enzimas C12N; procedimientos de obtención de péptidos por ingeniería genética C12N 15/00). › C07K 14/00 Péptidos con más de 20 aminoácidos; Gastrinas; Somatostatinas; Melanotropinas; Sus derivados. › de Campylobacter (G).

PDF original: ES-2395022_T3.pdf

 

Polipéptidos de Campylobacter y sus métodos de uso.

Fragmento de la descripción:

ANTECEDENTES

Campylobacter spp. es parte de la flora intestinal normal de un amplia variedad de animales salvajes y domésticos con un nicho particular para el huésped aviar. Campylobacter spp. parece tener una capacidad limitada para ser patogénica en animales salvajes y domésticos. En ganado, C. fetal subsp. jejuni y C. fetus subsp. intestinalis han sido aisladas de instestinos y experimentalemnte transmitidas a terneras rumiantes y prerumiantes que desarrollaron signos clínicos de fiebre, diarrea y disentería esporádica (Dannenberg et al. Am. J. Pathol. 34: 1099 (1958) y Thomas et al. Aust. Vet. J. 36: 146 (1981) ) . Se ha informado también de un síndrome de diarrea acuosa profusa con fiebre, anorexia y depresión en corderos con Campylobacter fetus como agente causante. Se ha informado también que Campylobacter spp. causa manifestaciones clínicas de disentería, adenomatosis intestinal y enteritis hemorrágica en cerdos y caballos, y mastitis en ganado comercial lechero.

En humanos, Campylobacter es la causa bacteriana más comúnmente informada de enfermedad diarreica endémica en todo el mundo. En los Estados Unidos se está convirtiendo en la causa más extendida de infección de transmisión alimentaria y afecta a más de 2 millones de personas anualmente. En Inglaterra y Gales, alrededor de 50.000 casos de campylobacter son comunicados anualmente sin signos de disminución de la incidencia. Se estima que por cada caso comunicado para vigilancia de laboratorio, ocurren otros siete casos sin comunicar. C. jejuni y C. coli son las dos especies aisladas más comunes responsables de Campylobacteriosis humana con C. jejuni siendo ahora la especie más frecuentemente aislable.

Se ha mostrado que el período de incubación después de ingestión de C. jejuni es aproximadamente 24-72 horas. El tamaño de inóculo requerido para provocar síntomas clínicos es tan bajo como 800 organismos. La tasa de enfermedad aumenta con números mayores ingeridos del organismo. Los síntomas comúnmente reportados de Campylobacteriosis humana incluyen diarrea, fiebre, y calambres abdominales. Con menos frecuencia, Campylobacter, particularmente C. jejuni, puede causar secuelas secundarias después de una infección aguda, incluyendo, artritis reactiva, fallo renal, Guillian-Barre, síndrome Reiter y otros síntomas extra intestinales.

La transmisión de Campylobacter spp. a poblaciones humanas es principalmente por medio de contaminación ambiental y alimentos contaminados, incluyendo aves de corral y productos de aves de corral tal como huevos. Campylobacter spp. puede aislarse del 30-100 % de las aves en muchas especies aviares salvajes y domésticas en cualquier momento dado. En los niños, el contacto con cachorros y gatitos con diarrea se ha mostrado como un importante factor adicional de riesgo. Algunas fuentes adicionales de infección han resultado de beber leche cruda derivada de vacas con mastitis clinica causada por Campylobacter. Todos los brotes transmitidos por leche han sido asociados con leche cruda o inapropiadamente pasteurizada.

La virulencia y patogénesis de Campylobacter spp. implica factores específicos tanto del huésped como del patógenos. Muchos determinantes de virulencia patógena-específica contribuyen a la patogénesis de estas bacterias. La virulencia bacteriana de estas bacterias es el resultado de muchos atributos diferentes, los cuales a menudo contribuyen a diferentes etapas en la complicada serie de sucesos reconocida como una infección. La exposición tiene lugar principalmente por el consumo de agua contaminada, comida o por contacto directo de persona a persona. Una vez ingeridas, las etapas de infección comunes a estas bacterias incluyen fijación, colonización, proliferación, daño al tejido, invasión y diseminación.

La primera barrera del huésped que la Campylobacter debe normalmente superar es la superficie mucosa. Una sola capa celular epitelial separa el huésped del lumen del tracto gastrointestinal. Esta barrera y una plétora de otros mecanismos antimicrobianos del huésped disuaden a los microorganismos comensales, patogénicos y oportunistas de establecer la infección. La adherencia a las superficies mucosas es un requisito previo de este patógeno para establecer la infección. Uno de las manifestaciones clínicas más marcadas de la colonización intestinal es la diarrea. Se ha propuesto que este síndrome clínico es producido por la síntesis y excreción de enterotoxinas que causan una secreción neta de fluído y electrolitos (diarrea) . Otros factores de virulencia específica incluyen los flagelos, que ayudan a la bacteria a superar el movimiento de compensación de la peristalsis y permite al organismo entrar y cruzar la capa mucosa que cubre el epitelio (Black et al., J. Infect. Dis. 157:472-479 (1988) , Caldwell et al., Infect Immun. 50:941-943 (1985) , Morooka et al., J. Gen. Micro. 131:1973-1980 (1980) y Newell et al. J. Hyg. Camb. 95:217-227 (1985) ) . Otros determinantes de patogenicidad sospechados incluyen quimiotaxia, adquisición de hierro, invasión celular del huésped, inflamación y secreción activa y disrupción epitelial con goteo de fluído seroso (Black et al. J. Infect. Dis. 157: 472-479 (1988) ) .

Los iones metálicos divalentes tales como hierro, cobalto, cobre, magnesio, manganeso, molibdeno, níquel, selenio, y cinc son elementos traza a menudo requeridos para la supervivencia de bacterias que infectan a huéspedes tanto animales como humanos. Estos elementos traza metálicos son usados por bacterias como cofactores para enzimas que catalizan reacciones bioquímicas para diversas rutas metabólicas y sistemas de transporte requeridos por el organismo. Los metales hierro, cinc y manganeso son los tres metales más importantes requeridos para la supervivencia de la bacteria. Iones de cinc son esenciales para la actividad de polimerasa de ADN y ARN, mientras que el manganeso es requerido para actividad superóxido dismutasa mitocondrial. El hierro es el más profundamente estudiado de todos los iones metálicos con correlaciones directas en la virulencia y la patogénesis de bacterias. El hierro es esencial para toda vida y se requiere para rutas metabólicas y enzimáticas de los organismos en todos los niveles filogénicos.

La capacidad de Campylobacter para evadir los mecanismos naturales de defensa del huésped vertebrado depende en parte de su capacidad para obtener hierro huésped, el cual a su vez influye directamente en la interacción patógeno-huésped. A causa de la naturaleza esencial del hierro, los huéspedes vertebrados han desarrollados mecanismos elaborados para ligar hierro a fluídos corporales (por ejemplo, transferrina en fluídos sanguíneo y linfático y lactoferrina en secreciones externas) . Estas proteínas de unión a hierro de alta afinidad crean un entorno restringido de hierro dentro del huésped reduciendo el nivel de hierro hasta aproximadamente 10-18 molar, una concentración demasiado baja para soportar el crecimiento de casi todas las bacterias. Estos mecanismos secuestrantes de hierro del huésped actúan como un mecanismo de defensa natural para combatir la invasión bacteriana. Para eludir estas condiciones restrictivas de hierro muchas especies bacterianas tienen mecanismos evolucionados para obtener hierro. Los mecanismos más comunes incluyen la difusión de hierro soluble a través de porinas y sistemas de transporte especializados que median la ingesta de hierro por sideróforos. Este último sistema es con mucho el mecanismo más ampliamente extendido o ubicuo para la adquisición de hierro e implica la quelación específica de hierro férrico por sideróforos y la síntesis de sus sistemas de transporte cognados, lo que permite a las bacterias continuar replicándose y superar los mecanismos de defensa no específicos del huésped. La replicación continuada, y por ello cada paso en el proceso infeccioso, depende finalmente de la capacidad del organismo para obtener hierro de su huésped.

Con tantas funciones básicas confiando en la disponibilidad de hierro, las bacterias han desarrollado una red regulatoria compleja para adquirir hierro bajo condiciones fisiológicas variantes. El hierro es un catión divalente que existe tanto en el estado ferroso (Fe2+) como el estado férrico (Fe3+) . Bajo condiciones anaeróbicas, el hierro está presente en la forma ferrosa soluble (Fe2+) y puede libremente difundirse a través de las porinas de la membrana externa dentro del periplasma. Por ejemplo, en E. coli el sistema de transporte de FeoAB presente en la membrana citoplasmática transportará las moléculas de hierro ferroso dentro del citoplasma celular. Bajo condiciones aeróbicas y pH neutro, el hierro está principalmente presente en la forma insoluble férrica (Fe3+) y no puede pasar a través de las porinas... [Seguir leyendo]

 


Reivindicaciones:

1. Una composición obtenible por un proceso que comprende:

proporcionar un cultivo comprendiendo un Campylobacter jejuni, en donde la Campylobacter jejuni ha sido adaptada para desarrollo en condiciones bajas de hierro añadiendo 10 Ig/ml de 2, 2’-dipiridilo al medio, y aumentando gradualmente la concentración a 20 Ig/ml e incubada en condiciones bajas de hierro;

romper la Campylobacter spp. para dar como resultado una mezcla comprendiendo membranas celulares rotas;

solubilizar la mezcla añadiendo a la mezcla un detergente biológico para dar como resultado una preparación comprendiendo proteínas solubilizadas y no solubilizadas; y

aislar los polipéptiods insolubilizados regulados por hierro.

2. La composición de la reivindicación 1 para uso en medicina.

3.Una composición comprendiendo una preparación aislada de células enteras de una Campylobacter jejuni, en donde las células comprenden polipéptidos expresables por la Campylobacter jejuni durante el desarrollo en condiciones bajas de hierro y no expresados durante el desarrollo en condiciones altas de hierro, en donde la Campylobacter jejuni ha sido adaptado para desarrollo en condiciones bajas de hierro añadiendo 10 Ig/ml de 2, 2’-dipiridilo al medio, e incrementando gradualmente la concentración a 20 Ig /ml.

4. Una composición obtenible por un proceso que comprende:

proporcionar un cultivo comprendiendo una Campylobacter jejuni, en donde la Campylobacter jejuni ha sido adaptada para desarrollo en condiciones bajas de hierro añadiendo 10 Ig/ml de 2, 2’-de dipiridilo al medio, e incrementando gradualmente la concentración a 20 Ig/ml e incubada en condiciones bajas de hierro;

inactivar la Campylobacter spp. para dar como resultado una composición que comprende células de Campylobacter spp. desactivadas, en donde la desactivación sucede bajo condiciones que no rompen las células; y

recolectar las células desactivadas.


 

Patentes similares o relacionadas:

Vacuna y métodos para reducir una infección por Campylobacter, del 7 de Agosto de 2019, de THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS: Una bacteria adecuada para su uso en la vacunación de aves de corral, y la expresión de un polipéptido antigénico que consiste en la secuencia […]

Proteínas N-glicosiladas recombinantes procedentes de células procariotas, del 6 de Marzo de 2019, de ETH ZURICH: Una proteína N-glicosilada recombinante, que comprende una o más de las siguientes secuencia o secuencias consenso de aminoácidos optimizados N-glicosilados: […]

Péptido que contiene múltiples sequones de glicosilación ligada a N, del 1 de Octubre de 2018, de THE GOVERNORS OF THE UNIVERSITY OF ALBERTA: Un péptido que comprende por lo menos dos repeticiones, preferiblemente nueve repeticiones, de la secuencia de aminoácidos como se establece en la SEQ ID NO: 1, en el que las […]

Salmonella enterica que presenta un N-glicano de C. Jejuni o derivados del mismo, del 13 de Septiembre de 2017, de EIDGENOSSISCHE TECHNISCHE HOCHSCHULE ZURICH: Salmonella enterica, caracterizada por que comprende al menos un operón pgl (para la glicosilación de proteínas) de Campylobacter jejuni o un derivado funcional del mismo […]

Mutantes por deleción de la flagelina y métodos para su uso, del 22 de Junio de 2016, de VAXINNATE CORPORATION: Una secuencia de aminoácidos que tiene al menos 80,0% de identidad con la secuencia de aminoácidos contigua como se expone en SEQ ID NO: 29 (R3), […]

Proteínas N-glicosiladas recombinantes procedentes de células procariotas, del 21 de Enero de 2015, de ETH ZURICH: Uso de una o varias secuencias de aminoácidos que comprenden la secuencia D/E- X- N- Z-S/T, en donde X y Z pueden ser cualquier aminoácido natural excepto prolina, para […]

Genes de toxinas de distensión citoletales como dianas para la detección de bacterias Campylobacter, del 12 de Febrero de 2014, de FUSO PHARMACEUTICAL INDUSTRIES LTD.: Método para detectar la presencia de Campylobacter coli, Campylobacter fetus y/o Campylobacter jejuni en una muestra de prueba, que comprende […]

Composiciones y métodos para la terapia y el diagnóstico de enfermedad inflamatoria del intestino, del 3 de Junio de 2013, de CORIXA CORPORATION: Polinucleótido aislado que comprende una secuencia seleccionada de entre el grupo que consiste en: (a) la secuencia proporcionada en SEC ID Nº 85; (b) el complemento […]

Utilizamos cookies para mejorar nuestros servicios y mostrarle publicidad relevante. Si continua navegando, consideramos que acepta su uso. Puede obtener más información aquí. .