Inventos patentados en España.

Inventos patentados en España.

Inventos patentados en España en los últimos 80 años. Clasificación Internacional de Patentes CIP 2013.

Lente intraocular apodizada con región difractiva frustrada.

Patente Europea. Resumen:

Lente oftálmica (10, 28), que comprende

una óptica (12, 30) que tiene una superficie anterior

(12, 32) y una superficie posterior (16, 34), proporcionando dicha óptica un foco de lejos,

una estructura difractiva (20, 36) que comprende una pluralidad de zonas difractivas anulares (24, 40) dispuestas en por lo menos una de dichas superficies alrededor de una primera zona central (24a) para proporcionar un foco de cerca, estando cada zona separada de una zona adyacente por un límite de zona (26, 42), que comprende un escalón (26a-26d) que imparte un retardo de fase óptico a la luz incidente,

dicha óptica proporciona un foco de lejos correspondiente al orden de difracción cero de la estructura difractiva y un foco de cerca correspondiente al primer orden de difracción de la estructura, caracterizada porque por lo menos dos límites de zona consecutivos fuera del primer límite de zona (26a) están configurados, de tal manera que una diferencia entre sus retardos de fase asociados para una longitud de onda de diseño de aproximadamente 550 nm está comprendida entre ¼ y 1 longitud de onda, para hacer que una parte de la luz incidente se dirija a una localización de foco intermedio entre dichos focos de cerca y de lejos para mejorar la visión intermedia, presentando dichos límites de zona consecutivos una altura de escalón diferencial adaptada para proporcionar dicha diferencia en sus retardos de fase asociados, y siendo la altura de escalón en el primer límite de zona (26a) que separa la primera zona central (24a) de su zona vecina (24b) diferente de todas las alturas de escalón respectivas entre los límites de zona consecutivos restantes (26b-26d), que son sustancialmente uniformes, para frustrar la contribución de la zona central a la estructura difractiva con el fin de desviar adicionalmente una parte de la luz incidente hacia la localización de foco intermedio, y en la que las alturas de escalón pueden definirse de acuerdo con la siguiente relación:



Altura de escalón ≥ Ec. (2)

(n2 − n1)

en la que:

b denota la altura de fase, 35 λ denota una longitud de onda de diseño de 550 nm, n2 denota el índice de refracción de la óptica, y n1 denota el índice de refracción del medio que rodea la óptica, en la que, para la altura de escalón en el primer límite de zona (26a) que separa la primera zona central (24a) de su zona vecina (24b), b está en un intervalo comprendido entre aproximadamente -0, 2 y aproximadamente 0, 2 y, 40 para los otros escalones uniformes (26b-26d), b está en un intervalo comprendido entre aproximadamente 0, 45 y aproximadamente 0, 55.

Solicitante: ALCON RESEARCH, LTD..

Nacionalidad solicitante: Estados Unidos de América.

Dirección: 6201 SOUTH FREEWAY FORT WORTH, TX TEXAS 76134 ESTADOS UNIDOS DE AMERICA.

Inventor/es: SIMPSON,MICHAEL.

Fecha de Publicación de la Concesión: 5 de Septiembre de 2012.

Clasificación Internacional de Patentes: G02C7/02 (.Cristales ; Sistemas de cristales), A61F2/16 (...Lentillas intraoculares [4]), G02C7/04 (..Lentes de contacto para los ojos (desinfección o esterilización de lentes de contacto A 61 L 12/00)), G02B5/18 (.Rejillas de difracción).

Volver al resumen de la patente.

Lente intraocular apodizada con región difractiva frustrada.
Descripción:

Lente intraocular apodizada con región difractiva frustrada.

Antecedentes

La presente invención se refiere en general a lentes oftálmicas y, más particularmente, a lentes intraoculares (IOL) que proporcionan una visión intermedia mejorada.

Las lentes intraoculares se implantan rutinariamente en los ojos del paciente durante la cirugía de cataratas para sustituir la lente cristalino natural. Algunas IOL emplean estructuras difractivas para dotar a un paciente no sólo de una potencia de enfoque de lejos, sino también de una potencia de enfoque de cerca, como se describe, por ejemplo, en el documento WO 2006/060480 (Alcon, Inc.) . Las IOL de este tipo pueden proporcionar también un grado limitado de visión intermedia debido a las propiedades de desenfoque de las dos potencias de lente primarias (es decir, las potencias de lejos y de cerca) .

Otras lentes oftálmicas son conocidas por los documentos WO 2006/047698 y US 5 117 306.

Sin embargo, existe todavía una necesidad de IOL difractivas que puedan proporcionar una visión intermedia mejorada y, más particularmente, existe una necesidad de IOL de este tipo que proporcionen una calidad de imagen intermedia mejorada sin ninguna degradación significativa de la visión de lejos y de cerca.

Sumario

La presente invención se refiere en general a lentes oftálmicas difractivas (por ejemplo, IOL difractivas) que proporcionan focos de cerca y de lejos mientras dirigen una parte de la luz incidente a una localización intermedia entre los focos de lejos y de cerca. Más particularmente, tal lente difractiva puede incluir una estructura difractiva que está adaptada para dirigir una parte de la luz incidente a la localización intermedia. En muchas formas de realización, la desviación de una parte de la luz incidente a la localización intermedia se consigue previendo una diferencia suficiente entre los retardos de fase generados por dos o más límites de zona de la estructura difractiva.

La invención se define por la reivindicación 1.

En un aspecto, la invención proporciona una lente oftálmica difractiva (por ejemplo, una IOL difractiva) que incluye una óptica que tiene una superficie anterior y una superficie posterior, en donde la óptica proporciona un foco de lejos. Una estructura difractiva que comprende una pluralidad de zonas difractivas está dispuesta sobre por lo menos una de esas superficies para proporcionar un foco de cerca. Cada zona está separada de una zona adyacente por un límite de zona que imparte un retardo de fase óptico a la luz incidente. Además, por lo menos dos límites de zona consecutivos (dos límites de zona que separan una zona de difracción común de dos zonas diferentes) están configurados de tal manera que una diferencia entre sus retardos de fase asociados para por lo menos una longitud

de onda de la luz incidente es mayor que aproximadamente 1/20 de longitud de onda ( ) , y, preferentemente,

λ

1

mayor que aproximadamente ¼ de longitud de onda ( ) , por ejemplo en un intervalo comprendido entre

λ

aproximadamente 1/20 de longitud de onda ( 1 λ ) y aproximadamente 1 longitud de onda (1 λ ) , para dirigir una

parte de la luz incidente a una localización entre los focos de cerca y de lejos.

En un aspecto relacionado, los límites de zona comprenden una pluralidad de escalones, en donde por lo menos dos escalones consecutivos presentan una altura diferencial adaptada para proporcionar una diferencia mayor que alrededor de 1/20 de longitud de onda y, preferentemente, mayor que alrededor de ¼ de longitud de onda, por ejemplo en un intervalo comprendido entre aproximadamente 1/20 de longitud de onda y aproximadamente 1 longitud de onda, en sus retardos de fase asociados.

En otro aspecto, la estructura difractiva de la lente oftálmica comprende una estructura difractiva truncada que cubre una parte, en vez de la totalidad, de una superficie de lente sobre la cual está dispuesta la estructura.

En otro aspecto, en la anterior IOL los dos límites de zona consecutivos presentan los retardos de fase diferenciales antes mencionados para por lo menos una longitud de onda en un intervalo comprendido entre aproximadamente 400 nm y aproximadamente 700 nm (por ejemplo, 550 nm) .

En otro aspecto, la óptica proporciona una potencia óptica de enfoque de lejos en un intervalo comprendido entre aproximadamente 6 dioptrías (D) y aproximadamente 34 D. Además, la estructura difractiva proporciona una potencia de adición de enfoque de cerca en un intervalo comprendido entre aproximadamente 2 D y aproximadamente 4 D, por ejemplo en un intervalo comprendido entre aproximadamente 2, 5 D y aproximadamente 4

D o en un intervalo comprendido entre aproximadamente 3 D y aproximadamente 4 D. La potencia de adición efectiva de una IOL cuando se implanta en el ojo puede ser diferente de su potencia de adición nominal (real) . Por ejemplo, la combinación de la potencia corneal y la separación entre la córnea y la IOL pueden debilitar la potencia de adición efectiva de la IOL; por ejemplo, una potencia de adición de 4 D nominal puede dar como resultado una potencia de adición efectiva de 3 D para todo el ojo. En las siguientes secciones, a menos que se indique otra cosa, los valores mencionados de potencia de adición se refieren a la potencia de adición de lente nominal (real) , que puede ser diferente de la potencia de adición efectiva cuando la IOL se implanta en el ojo.

En un aspecto relacionado, la óptica se forma de un material biocompatible. Algunos ejemplos de tales materiales incluyen, sin limitación, acrílico blando, silicona, hidrogel u otros materiales poliméricos biocompatibles que tienen un índice de refracción requerido para una aplicación particular. Por ejemplo, en algunas formas de realización la óptica está formada por un copolímero reticulado de acrilato de 2-feniletilo y metacrilato de 2-feniletilo, comúnmente conocido como Acr y sof.

En otro aspecto, en la lente oftálmica anterior por lo menos una de las superficies anterior o posterior incluye un perfil de base que exhibe un grado seleccionado de asfericidad (por ejemplo, una caracterizada por una constante cónica en un intervalo comprendido entre aproximadamente -10 y aproximadamente -1000, por ejemplo en un intervalo comprendido entre aproximadamente -10 y aproximadamente -100) o de toricidad para proporcionar una calidad de imagen mejorada.

En otro aspecto, se describe una lente oftálmica difractiva que incluye una óptica que tiene una superficie anterior, una superficie posterior y una estructura difractiva que comprende una pluralidad de zonas difractivas dispuestas en por lo menos una de esas superficies, en donde cada zona está separada de una zona adyacente por un límite de zona. La óptica proporciona un foco de lejos correspondiente al orden de difracción cero de la estructura difractiva y un foco de cerca correspondiente al primer orden de difracción de la estructura. Además, los límites de zona se caracterizan por una pluralidad de alturas de escalón no uniformes que proporcionan retardos de fase no uniformes adaptados para dirigir una parte de luz incidente a una localización entre los focos de cerca y de lejos a fin de mejorar la visión intermedia.

En un aspecto relacionado, las alturas de escalón no uniformes comprenden las alturas de por lo menos dos escalones consecutivos, impartiendo cada una de ellas un retardo de fase a la luz incidente tal que una diferencia entre esos retardos de fase, para por lo menos una longitud de onda de la luz incidente, es mayor que alrededor de

1/20 de longitud de onda ( ) (por ejemplo, en un intervalo comprendido entre aproximadamente 1/20 de longitud

λ

de onda y aproximadamente 1 longitud de onda) .

En un aspecto relacionado, en la lente difractiva anterior la óptica proporciona una potencia óptica de enfoque de lejos en un intervalo comprendido entre aproximadamente 6 D y aproximadamente 34 D (por ejemplo, en un intervalo comprendido entre aproximadamente 16 D y aproximadamente 28 D) y una potencia de adición de enfoque de cerca en un intervalo comprendido entre aproximadamente 2 D y aproximadamente 4 D.

En otro aspecto, las zonas difractivas están rodeadas por una parte de la respectiva superficie que carece de elementos difractivos.

En otros aspectos, se describe una lente oftálmica difractiva (por ejemplo, una IOL) que comprende una óptica que tiene una superficie anterior y una superficie posterior, cada una de las cuales está caracterizada por un perfil de base. La óptica proporciona una potencia óptica de enfoque de lejos (por ejemplo, en un intervalo comprendido entre aproximadamente 6 D y aproximadamente 34 D) e incluye una estructura difractiva dispuesta en una de sus superficies que proporciona una potencia óptica de enfoque de cerca (por ejemplo, en un intervalo comprendido entre aproximadamente 2 D y aproximadamente 4 D) . La estructura difractiva comprende una pluralidad de zonas difractivas, por lo menos dos de las cuales exhiben curvaturas de superficie suficientemente diferentes (por ejemplo, una diferencia en un intervalo comprendido entre aproximadamente 10% y aproximadamente 50%) para hacer que una parte de luz incidente sobre la óptica se dirija a una localización intermedia entre los focos de cerca y de lejos para mejorar la visión intermedia. Por ejemplo, en algunas formas de realización, las curvaturas de superficie de por lo menos dos zonas adyacentes son suficientemente diferentes para hacer que una parte de la luz incidente se dirija a la localización intermedia.

En un aspecto relacionado, en la lente oftálmica anterior la curvatura de superficie de por lo menos una de las zonas difiere en más de alrededor de 20% (por ejemplo, en un intervalo comprendido entre aproximadamente 10% y aproximadamente 50%) de la curvatura o curvaturas de superficie de una o más zonas adyacentes.

En otro aspecto, la invención proporciona una lente oftálmica difractiva (por ejemplo, una IOL) que dispone de una óptica que tiene una superficie anterior y una superficie posterior, en donde la óptica proporciona un foco de lejos (por ejemplo, en un intervalo comprendido entre aproximadamente 6 D y aproximadamente 34 D) . Una estructura difractiva que comprende una pluralidad de zonas difractiva está dispuesta en por lo menos una de esas superficies

para proporcionar un foco de cerca (por ejemplo, uno asociado con una potencia de adición en un intervalo comprendido entre aproximadamente 2 D y aproximadamente 4 D) . Una superficie de por lo menos una de las zonas difractivas exhibe una asfericidad tal que la estructura difractiva dirige por lo menos una parte de la luz incidente a una localización intermedia entre los focos de cerca y de lejos. La asfericidad puede caracterizarse, por ejemplo, por una constante cónica en un intervalo comprendido entre aproximadamente -10 y aproximadamente -1000, por ejemplo en un intervalo comprendido entre aproximadamente -10 y aproximadamente -100.

En otro aspecto, en las lentes oftálmicas anteriores una o más superficies ópticas pueden incluir un perfil de base que exhibe un grado seleccionado de asfericidad o toricidad para proporcionar una calidad de visión mejorada.

Puede obtenerse una compresión adicional de la invención por referencia a la siguiente descripción detallada en conjunción con los dibujos, que se describen brevemente a continuación.

Breve descripción de los dibujos

La figura 1A es una vista en sección transversal esquemática de una IOL según un ejemplo de forma de realización de la invención.

La figura 1B es otra vista en sección transversal de una IOL según una forma de realización de la invención, que ilustra una estructura difractiva caracterizada por alturas de escalón no uniformes para dirigir una parte de luz incidente a un foco intermedio,

La figura 2 es una vista frontal esquemática de la IOL de la figura 1B, que ilustra una pluralidad de zonas de difracción anulares que forman la estructura difractiva,

La figura 3A es una vista lateral esquemática de una IOL difractiva según otro ejemplo que no es parte de la invención, que tiene una estructura difractiva apodizada,

La figura 3B es una vista frontal esquemática de la IOL de la figura 3A,

La figura 4A es una función de propagación lineal (LSF) teórica calculada en un foco intermedio para una lente difractiva convencional que tiene una estructura difractiva apodizada,

La figura 4B es una función de propagación lineal (LSF) teórica calculada en un foco intermedio para un ejemplo de lente según las enseñanzas de la invención, que tiene una estructura difractiva apodizada,

La figura 5A muestra la fase óptica teórica en la pupila de una IOL difractiva apodizada que carece de una estructura difractiva frustrada según las enseñanzas de la invención, en donde la abscisa representa el cuadrado de la distancia al centro de lente y la ordenada representa la fase óptica,

La figura 5B muestra la fase óptica teórica en la pupila de una IOL difractiva apodizada, en donde la abscisa representa el cuadrado de la distancia al centro de lente y la ordenada representa la fase óptica,

La figura 6 es una vista lateral esquemática de una IOL difractiva según una realización de la invención, que comprende una estructura difractiva que tiene una región difractiva central con una curvatura de superficie que es diferente de la de una zona adyacente, de modo que la estructura difractiva dirigiría una parte de la luz incidente a un foco intermedio,

La figura 7 es una vista lateral esquemática de una IOL difractiva según otra realización de la invención, que comprende una estructura difractiva que tiene una zona central que exhibe un perfil de superficie asférica, y

La figura 8 es una vista lateral esquemática de una IOL difractiva según otra realización de la invención, que tiene una superficie anterior, sobre la cual está dispuesta una estructura difractiva de acuerdo con las enseñanzas de la invención, y una superficie posterior que puede exhibir un perfil de base asférico o, en algunos casos, tórico.

Descripción detallada

Con referencia a las figuras 1A y 1B, una IOL 10 según una forma de realización de la invención incluye una óptica 12 que tiene una superficie óptica anterior 14 y una superficie óptica posterior 16 dispuestas alrededor de un eje óptica 18. Aunque en esta realización las superficies ópticas 14 y 16 son en general convexas para proporcionar a la IOL una forma biconvexa, en otras formas de realización la IOL puede tener otras formas, tales como planoconvexa, planocóncava o convexocóncava. Las curvaturas de las superficies anterior y posterior, junto con el índice de refracción del material que forma la lente, se seleccionan de tal manera que la óptica 10 proporcione una potencia óptica de enfoque de lejos, por ejemplo, en un intervalo comprendido entre aproximadamente 6 dioptrías

(D) y aproximadamente 34 D (por ejemplo, en un intervalo comprendido entre aproximadamente 16 D y aproximadamente 28 D) . En algunos casos, la potencia óptica de enfoque de lejos de la lente puede estar en un

intervalo comprendido entre aproximadamente -5 D y aproximadamente 5, 5 D.

Una estructura difractiva 20, que está dispuesta en una parte de la superficie anterior 14, proporciona un foco de cerca con una potencia de adición, por ejemplo en un intervalo comprendido entre aproximadamente 2 D y aproximadamente 4 D (por ejemplo, en un intervalo comprendido entre aproximadamente 2, 5 D y aproximadamente 4 D o en un intervalo comprendido entre aproximadamente 3 D y aproximadamente 4 D) . La potencia de adición efectiva de la IOL cuando se implanta en el ojo puede ser diferente de su potencia de adición nominal (real) . Por ejemplo, la combinación de la potencia corneal y la separación entre la córnea y la IOL puede debilitar la potencia de adición efectiva de IOL; por ejemplo, una potencia de adición nominal de 4 D puede dar como resultado una potencia de adición efectiva de 3 D para todo el ojo. En las siguientes secciones, a menos que se indique otra cosa, los valores citados de potencia de adición se refieren a la potencia de adición nominal (real) de la lente, que puede ser diferente de la potencia de adición efectiva cuando la IOL se implanta en el ojo.

La IOL 10 puede incluir además una pluralidad de miembros de fijación o hápticas 22 que facilitan la colocación de ésta en el ojo de un paciente. La óptica se forma preferentemente de un material biocompatible, tal como acrílico blando, silicona, hidrogel u otros materiales poliméricos biocompatibles que tengan un índice de refracción requerido para una aplicación particular. Las hápticas 22 pueden formarse también de materiales poliméricos adecuados, tales como polimetacrilato, polipropileno y similares. En algunas formas de realización, las hápticas 22 pueden formarse de manera enteriza con la óptica 12, mientras que, en otras formas de realización, pueden formarse por separado y acoplarse a continuación a la óptica. En una realización, la óptica 12 se forma de un copolímero reticulado de acrilato de 2-feniletilo y metacrilato de 2-feniletilo, que se conoce comúnmente como Acr y sof.

Haciendo referencia a las figuras 1A, 1B y 2, la estructura difractiva 20 está compuesta de una pluralidad de zonas difractivas 24 separadas una de otra por una pluralidad de escalones 26 (las alturas de escalón se exageran para fines de claridad) . Más particularmente, cada zona se separa de una zona adyacente por un escalón (por ejemplo, un escalón 26a que separa la primera zona 24a de la segunda zona 24b) que imparte un retardo de fase a la luz incidente. Como se discute más abajo, en este ejemplo de realización un retardo de fase generado por el escalón 26a que separa la zona central (la primera zona) de la segunda zona es diferente de un retardo de fase provocado por los otros escalones, de tal manera que una parte de la luz incidente sobre la lente se dirige a una localización intermedia entre los focos de cerca y de lejos.

En este ejemplo de realización, las zonas difractivas comprenden una pluralidad de zonas anulares cuyos límites están radialmente localizados con relación al eje óptico 18 de acuerdo con la siguiente relación:

ri 2 =r02 + 2iλf Ec. (1)

en la que:

i denota el número de zona (i=0 denota la zona central) ,

λ denota la longitud de onda de diseño,

f denota una distancia focal del foco de cerca, y

r0 denota el radio de la zona central.

En algunas formas de realización, la longitud de onda de diseño λ se elige para que sea luz verde de 550 nm en el centro de la respuesta visual. Además, en algunos casos el radio de la zona central (r0) puede ajustarse para que

sea

Como se discute con más detalle a continuación, en algunas otras formas de realización la localización del límite de una o más zonas puede desviarse de la definida por la relación anterior para facilitar adicionalmente la acción de dirigir una parte de la radiación incidente a una localización intermedia entre los focos de cerca y de lejos.

Como se ha hecho notar anteriormente, en este ejemplo de realización la altura del escalón que separa las zonas de difracción primera y segunda es diferente de las alturas de los otros escalones (que, en esta realización, son sustancialmente uniformes) , de tal manera que la estructura difractiva dirige una parte de la luz incidente a una localización intermedia entre los focos de cerca y de lejos. Por ejemplo, la diferencia entre el retardo de fase generado por el escalón 26a y el generado por cada uno de los otros escalones (es decir, los escalones 26b-26d)

puede ser mayor que alrededor de 1/20 de longitud de onda ( ) y, preferentemente, mayor que alrededor de 1/4

λ

de longitud de onda ( 1λ ) para por lo menos una longitud de onda de la luz incidente, por ejemplo para por lo menos

4 una longitud de onda en un intervalo comprendido entre aproximadamente 400 nm y aproximadamente 700 nm. A modo de ejemplo, en una realización las alturas de escalón pueden definirse de acuerdo con la siguiente relación:

Altura de escalón = Ec. (2)

(n2 − n1)

en la que:

b denota la altura de fase

λ denota la longitud de onda de diseño, por ejemplo 550 nm,

n2 denota el índice de refracción de la óptica, y

n1 denota el índice de refracción del medio que rodea la óptica,

en la que:

para el escalón 26a, b está en un intervalo comprendido entre aproximadamente -0, 2 y aproximadamente 0, 2, y para los otros escalones, b está en un intervalo comprendido entre aproximadamente 0, 45 y aproximadamente 0, 55 y es preferentemente de aproximadamente 0, 5.

La Ec. (2) anterior indica que la altura de escalón que separa la zona central de su zona vecina es diferente de las alturas de escalón restantes. Más específicamente, las alturas de escalón distintas de la que separa la zona central de su zona vecina son sustancialmente uniformes y producen un retardo de fase óptico que da como resultado que la estructura difractiva divida la luz incidente de manera aproximadamente igual entre el foco de cerca, que corresponde al primer orden de la estructura difractiva, y el foco de distancia, que corresponde al orden de difracción cero. Por el contrario, la altura de escalón que separa la zona central de su zona vecina genera un retardo de fase diferente que provoca que parte de la luz incidente se dirija a una localización intermedia entre los focos de cerca y de lejos. En otras palabras, el retardo de fase diferente generado por la altura de escalón entre la zona central y su zona vecina altera la contribución de la zona central a la luz difractada por la estructura difractiva de tal manera que, mientras la zona central continúa aportando luz a los focos de cerca y de lejos, ésta dirige parte de la luz a una localización intermedia entre estos focos – la zona central no es un contribuyente perfecto a la estructura difractiva regular. Esta estructura difractiva se denomina aquí también “estructura difractiva frustrada” y la difracción que produce se denomina aquí “difracción frustrada” para indicar que modifica un patrón de difracción regular a fin de desviar parte de la luz incidente a una localización intermedia entre los focos de cerca y de lejos. Además, la localización intermedia se denomina aquí también foco intermedio, aunque en muchas formas de realización la convergencia de luz en la localización intermedia no da como resultado un enfoque tan nítido como los presentes en los focos de cerca y de lejos.

En algunas formas de realización, se elimina el escalón que separa la zona central de su zona vecina (es decir, la altura de escalón entre las zonas de difracción primera y segunda se ajusta a cero) para dirigir una parte de la luz incidente a la localización intermedia. En otras palabras, las zonas de difracción primera y segunda se convierten en una única zona central para generar un foco intermedio.

En algunas formas de realización, además de tener por lo menos dos alturas de escalón consecutivas que generan retardos de fase que difieren uno de otro en un valor mayor que un umbral (por ejemplo, mayor que alrededor de 1/20 de longitud de onda) , se apodizan una pluralidad de alturas de escalón que separan las zonas difractivas de la estructura difractiva de la IOL para desplazar la distribución de la energía luminosa entre los focos de cerca y de lejos a medida que cambia el tamaño de la pupila, por ejemplo para producir el deslumbramiento. A modo de ejemplo, las figuras 3A y 3B representan esquemáticamente un ejemplo de IOL 28 según un ejemplo alternativo que no forma parte de la invención, el cual incluye una óptica 30 que tiene una superficie óptica anterior 32 y una superficie óptica posterior 34 dispuestas alrededor de un eje óptico OA, y una estructura difractiva 36 dispuesta en la superficie óptica anterior. De manera similar a la realización previa, la óptica 30 proporciona una potencia de enfoque de lejos, por ejemplo en un intervalo comprendido entre aproximadamente 6 D y aproximadamente 34 D (por ejemplo, en un intervalo comprendido entre aproximadamente 16 D y aproximadamente 28 D) . Además, la óptica 30 incluye hápticas 38 que facilitan su implantación en el ojo de un paciente.

La estructura difractiva 36 está formada por una pluralidad de zonas difractivas 40 separadas una de otra por una pluralidad de escalones 42a-42e. De manera similar a la realización previa, la estructura difractiva genera un foco de cerca que corresponde a su primer orden de difracción y un foco de lejos que corresponde al orden cero de la estructura difractiva. Además, se configura una diferencia entre los retardos de fase generados por los escalones consecutivos 42a y 42b, por ejemplo de una manera discutida anteriormente en conexión con la realización previa, de tal modo que la estructura difractiva dirige una parte de la luz incidente a una localización intermedia entre los focos de cerca y de lejos. Además, en esta realización se apodizan las alturas de los escalones 42b, 42c, 42d y 42e, es decir que éstas varían en función de su distancia radial al eje óptico OA. Por ejemplo, en este ejemplo de realización las alturas de esos escalones disminuyen a medida que aumentan sus distancias al eje óptico. Esta apodización provoca un desplazamiento en la distribución de la energía luminosa entre los focos de cerca y de lejos a medida que varía el tamaño de la pupila, es decir, a medida que cambia el número de zonas que contribuyen a la difracción de la luz.

Con referencia continuada a las figuras 3A y 3B, las alturas de escalón de los límites de zona de la estructura

difractiva 36 pueden definirse de acuerdo con las siguientes relaciones:

para el escalón que separa la zona central de la segunda zona (es decir, el escalón 42a) :

Altura de escalón = Ec. (4a)

(n2 − n1)

en la que:

b es la altura de fase con un valor en un intervalo comprendido entre aproximadamente -0, 2 y aproximadamente 0, 2 y los otros parámetros se definen a continuación, y para los otros escalones:

Altura de escalón = Ec. (4b)

fapodizar

(n2 − n1)

en la que

b denota la altura de fase con un valor entre aproximadamente 0, 45 y aproximadamente 0, 55 (preferentemente, de

aproximadamente 0, 5) , λ denota la longitud de onda de diseño, por ejemplo 550 nm, n2 denota el índice de refracción de la óptica, n1 denota el índice de refracción del medio que rodea la óptica, y fapodizar denota una función de apodización.

Puede emplearse una variedad de funciones de apodización. Por ejemplo, en algunas formas de realización la función de apodización (fapodizar) puede definirse de acuerdo con la siguiente relación:

(ri − rdentro ) exp fapodizar = 1−{ }, rdentro ≤ ri ≤ rfuera Ec. (5)

(r − r )

fuera dentro

en la que

ri denota la distancia de cada límite de zona radial a la intersección del eje óptico con la superficie, rdentro denota el límite interior de la zona de apodización que, en el ejemplo de realización anterior, corresponde al límite interior de la segunda zona de difracción, rfuera denota el límite exterior de la zona de apodización, y exp denota un exponente para obtener una reducción deseada en las alturas de escalón. Otros detalles relativos a la apodización de las alturas de escalón pueden encontrarse, por ejemplo, en la patente US nº 5.600.142. Pueden emplearse también otras funciones de apodización. A modo de ejemplo, pueden utilizarse funciones de apodización alternativas descritas en una solicitud de patente copendiente titulada “Lentes intraoculares difractivas truncadas”, que se ha cedido al cesionario de la presente solicitud.

A modo de ejemplo, la figura 4A representa un perfil de la función de propagación lineal (LSF) calculada, que corresponde a la intensidad a través de la imagen de un objeto lineal, para una lente difractiva apodizada que tiene una estructura difractiva apodizada convencional en la que todas las alturas de escalón se definen de acuerdo con la Ecuación (4b) anterior con un único valor b (sin una diferencia significativa entre los retardos de fase provocados por los dos primeros escalones) . La figura 5A muestra la fase teóricamente calculada para tal lente a través de la pupila de la lente en función de la distancia cuadrada al centro de la lente. A modo de comparación, la figura 4B representa el perfil LSF de una lente difractiva apodizada que tiene una estructura difractiva cuyas alturas de escalón se definen de acuerdo con las Ecuaciones (4a) y (4b) (es decir, una lente que exhibe una “difracción frustrada”) y que tiene un diámetro de zona central mayor y un retardo de fase menor en el primer escalón que los de la lente convencional. Y la figura 5B muestra la fase óptica teóricamente calculada para tal lente a través de la pupila de la lente en función del cuadrado de la distancia al centro de la lente. Haciendo referencia de nuevo a las figuras 4A y 4B, ambos perfiles LSF se calcularon para un tamaño del diámetro de la pupila de 3 mm. El perfil LSF que corresponde a la lente difractiva frustrada exhibe un foco de línea central bien distinto que no está presente en la LSF corresponde a la lente difractiva apodizada convencional, indicando que la lente difractiva frustrada dirige una parte de la energía luminosa a una localización intermedia entre los focos de cerca y de lejos y mejora así la visión intermedia.

En algunas formas de realización, las localizaciones de una o más límites de zona se alteran con relación a los definidos por la Ec. (1) anterior a fin de proporcionar una difracción frustrada, dirigiendo así una parte de la luz incidente a una localización intermedia entre los focos de cerca de lejos. Por ejemplo, la localización de una o más límites de zona puede diferir de las dictadas por la Ec. (1) anterior en un factor dentro de un intervalo comprendido entre aproximadamente 20% y aproximadamente 50%. En algunas formas de realización, tal configuración de las localizaciones de límite de zona se emplea en lugar de ajustar los retardos de fase provocados por los límites de zona a fin de conseguir una difracción frustrada - aunque en otras formas de realización las localizaciones de los límites de zona y sus retardos de fase asociados pueden configurarse para obtener una difracción frustrada. A modo de ejemplo, el diámetro de la zona central puede ser diferente, por ejemplo mayor que el definido por la Ec. (1) anterior, de tal manera que la estructura difractiva dirigiría parte de la luz incidente a una localización entre los focos

de cerca y de lejos. Por ejemplo, el radio de la zona central puede ser mayor que λf , por ejemplo en un factor

dentro de un intervalo comprendido entre aproximadamente 20 y aproximadamente 50 por ciento.

En algunas formas de realización, las alturas de escalón asociadas con más de un límite de zona pueden ajustarse, por ejemplo de una manera discutida anteriormente, para hacer que la estructura difractiva dirija una parte de la luz incidente a una localización intermedia entre los focos de cerca y de lejos.

Además, en algunas otras formas de realización, en vez de ajustar la altura del escalón que separa la zona central de su zona vecina, se configuran una o más alturas de escalón asociadas a otros límites de zona, por ejemplo de una manera discutida anteriormente, de tal modo que la estructura difractiva dirigiría una parte de la luz incidente a una localización intermedia entre los focos de cerca y de lejos. Por ejemplo, la difracción puede “frustrarse” en una o más zonas periféricas.

En algunas otras formas de realización, la curvatura de superficie de por lo menos una zona de difracción es diferente de la de por lo menos una zona de difracción adyacente de tal manera que la estructura difractiva dirigiría una parte de la luz incidente a una localización intermedia entre los focos de cerca y de lejos. A modo de ejemplo, la figura 6 representa esquemáticamente un ejemplo de IOL 44 de acuerdo con una realización que incluye una óptica 46 que tiene una superficie óptica anterior 48 y una superficie óptica posterior 50. La IOL incluye además una estructura difractiva 52 dispuesta en una parte de la superficie anterior. La óptica 46 proporciona una potencia óptica de enfoque de lejos, por ejemplo en un intervalo comprendido entre aproximadamente 6 D y aproximadamente 34 D, y una potencia de adición de enfoque de cerca, por ejemplo en un intervalo comprendido entre aproximadamente 2 D y aproximadamente 4 D. La estructura difractiva 52 incluye una pluralidad de zonas de difracción 54 que están separadas una de otra por una pluralidad de escalones, que pueden ser uniformes, apodizados (de una manera convencional o de una manera según las enseñanza de la invención) . En este ejemplo de realización, la estructura difractiva está caracterizada por una pluralidad de alturas de escalón sustancialmente uniformes.

En esta realización, la curvatura de superficie de la zona de difracción central (es decir, la zona 54a) es diferente (ésta es más empinada en este caso) a la de su zona adyacente (es decir, la zona 54b) de tal manera que la estructura difractiva dirige una parte de la radiación incidente a una localización intermedia entre los focos de cerca y de lejos. A modo de ejemplo, la diferencia entre las curvaturas de superficie de las dos zonas difractivas puede estar, por ejemplo, en un intervalo comprendido entre aproximadamente 10% y aproximadamente 50%, por ejemplo alrededor de 10%. Aunque en esta realización las curvaturas de superficie de la zona de difracción central y la de su zona adyacente están configuradas para dirigir una parte de la energía luminosa incidente a la localización intermedia, en formas de realización alternativas pueden configurarse otras zonas de difracción de esta manera para proporcionar un foco intermedio. Además, en algunas formas de realización las curvaturas de superficie de más de dos zonas de difracción pueden adaptarse, por ejemplo de una manera discutida anteriormente, para dirigir luz a la localización intermedia.

En algunas formas de realización, la superficie de por lo menos una zona de difracción exhibe una asfericidad diseñada para hacer que la estructura difractiva envíe una parte de la energía luminosa incidente a la localización intermedia. A modo de ejemplo, la figura 7 representa esquemáticamente una IOL 56 que comprende una óptica 58 que tiene una superficie óptica posterior 60 y una superficie óptica anterior 62 sobre la cual está dispuesta una estructura difractiva 64. De manera similar a las formas de realización previas, la estructura difractiva 64 está formada por una pluralidad de zonas de difracción separadas una de otra por una pluralidad de enfoques. Aunque en algunos casos (por ejemplo, en este ejemplo de realización) los escalones están configurados para provocar una difracción frustrada, en otros ejemplos los escalones pueden ser sustancialmente uniformes o puede apodizarse de manera convencional. La superficie anterior 62 se caracteriza por un perfil de base sustancialmente esférico. Sin embargo, el perfil de superficie de la zona de difracción central (zona A) exhibe una asfericidad caracterizada, por ejemplo, por una constante cónica en un intervalo comprendido entre aproximadamente -10 y aproximadamente 1000 (por ejemplo, en un intervalo comprendido entre aproximadamente -10 y aproximadamente -100) para hacer que la estructura difractiva desvíe una parte de la energía luminosa incidente a la localización intermedia.

En algunas formas de realización, los perfiles de superficie de una pluralidad de zonas de difracción (los perfiles de superficie entre los límites de zona) exhiben asfericidades seleccionadas, por ejemplo similares a las discutidas anteriormente, para dirigir luz a la localización intermedia. Esto corresponde a la creación de desviaciones respecto de las líneas rectas para los perfiles similares a dientes de sierra mostrados en la figura 5B.

En algunas formas de realización, el perfil de base de por lo menos una de las superficies ópticas de la IOL presenta un grado seleccionado de asfericidad o toricidad para proporcionar una calidad de visión mejorada. Por ejemplo, la figura 8 representa esquemáticamente una IOL 66 según otra realización de la invención, que incluye una óptica 68 que tiene una superficie óptica anterior 70 y una superficie óptica posterior 72 dispuestas alrededor de un eje óptico

74. Una estructura difractiva frustrada 76 según las enseñanzas de la invención está dispuesta en la superficie anterior. Además, la superficie posterior incluye un perfil que es sustancialmente coincidente con un perfil esférico (mostrado por líneas discontinuas) a distancias pequeña del eje óptico y presenta una desviación creciente respecto de ese perfil esférico en función de la distancia radial creciente al eje óptico. En algunas formas de realización, esta desviación puede impartir un grado seleccionado de asfericidad a la superficie posterior, por ejemplo una caracterizada por una constante cónica en un intervalo comprendido entre aproximadamente -10 y aproximadamente -1000 (por ejemplo, en un rango de alrededor -10 y aproximadamente -100) , para proporcionar una calidad de visión mejorada. En algunas otras formas de realización, el perfil de base de la superficie sobre la

cual está dispuesta la estructura difractiva frustrada (por ejemplo, la superficie óptica anterior 20 en este caso) puede exhibir un grado seleccionado de asfericidad para mejorar la calidad de visión. Además, en otras formas de realización una o más superficies de una IOL que tiene una estructura difractiva frustrada, tal como la IOL 66 anterior, pueden exhibir un grado seleccionado de toricidad para lograr una calidad de visión mejorada. Por ejemplo, las superficies anterior y/o posterior 70 o 72 de la IOL 66 pueden tener un perfil de base tórico.

En algunas formas de realización, la IOL difractiva frustrada puede formarse de un material que pueda proporcionar algún filtrado de la luz azul. A modo de ejemplo, la IOL puede formarse del material Acr y sof Natural. A modo de ejemplo adicional, la patente US nº 5.470.932 describe tintes amarillos polimerizables que pueden utilizarse para bloquear o reducir la intensidad de la luz azul transmitida a través de la IOL.

En las formas de realización anteriores se discuten diversas formas de proporcionar una lente difractiva frustrada. Deberá entenderse que cada una de las características estructurales utilizadas en las formas de realización anteriores para generar un foco intermedio puede emplearse individualmente o en combinación con una o más características diferentes. Por ejemplo, en algunas formas de realización, además de configurar la altura de escalón

que separa la zona central de su zona adyacente para generar un foco intermedio, la curvatura de la zona central puede ajustare también de una manera discutida anteriormente para dirigir una parte de luz incidente al foco intermedio.

Las diversas lentes discutidas anteriormente pueden fabricarse empleando técnicas de fabricación conocidas en la 25 técnica.

Los expertos ordinarios en la materia apreciarán que pueden hacerse diversos cambios en las formas de realización anteriores sin apartarse del alcance de la invención, según se define por las reivindicaciones.




Reivindicaciones:

1. Lente oftálmica (10, 28) , que comprende

una óptica (12, 30) que tiene una superficie anterior (12, 32) y una superficie posterior (16, 34) , proporcionando dicha óptica un foco de lejos,

una estructura difractiva (20, 36) que comprende una pluralidad de zonas difractivas anulares (24, 40) dispuestas en por lo menos una de dichas superficies alrededor de una primera zona central (24a) para proporcionar un foco 10 de cerca, estando cada zona separada de una zona adyacente por un límite de zona (26, 42) , que comprende un escalón (26a-26d) que imparte un retardo de fase óptico a la luz incidente,

dicha óptica proporciona un foco de lejos correspondiente al orden de difracción cero de la estructura difractiva y un foco de cerca correspondiente al primer orden de difracción de la estructura, 15 caracterizada porque

por lo menos dos límites de zona consecutivos fuera del primer límite de zona (26a) están configurados, de tal manera que una diferencia entre sus retardos de fase asociados para una longitud de onda de diseño de 20 aproximadamente 550 nm está comprendida entre ¼ y 1 longitud de onda, para hacer que una parte de la luz incidente se dirija a una localización de foco intermedio entre dichos focos de cerca y de lejos para mejorar la visión intermedia, presentando dichos límites de zona consecutivos una altura de escalón diferencial adaptada para proporcionar dicha diferencia en sus retardos de fase asociados, y siendo la altura de escalón en el primer límite de zona (26a) que separa la primera zona central (24a) de su zona vecina (24b) diferente de todas las

alturas de escalón respectivas entre los límites de zona consecutivos restantes (26b-26d) , que son sustancialmente uniformes, para frustrar la contribución de la zona central a la estructura difractiva con el fin de desviar adicionalmente una parte de la luz incidente hacia la localización de foco intermedio,

y en la que las alturas de escalón pueden definirse de acuerdo con la siguiente relación: 30

Altura de escalón = Ec. (2)

(n2 − n1)

en la que:

b denota la altura de fase, 35 λ denota una longitud de onda de diseño de 550 nm, n2 denota el índice de refracción de la óptica, y n1 denota el índice de refracción del medio que rodea la óptica, en la que, para la altura de escalón en el primer límite de zona (26a) que separa la primera zona central (24a) de su zona vecina (24b) , b está en un intervalo comprendido entre aproximadamente -0, 2 y aproximadamente 0, 2 y, 40 para los otros escalones uniformes (26b-26d) , b está en un intervalo comprendido entre aproximadamente 0, 45 y aproximadamente 0, 55.

2. Lente según la reivindicación 1, en la que dicha estructura difractiva comprende una estructura difractiva truncada

que cubre una parte de la superficie sobre la cual está dispuesta. 45

3. Lente según la reivindicación 1, en la que dicha óptica proporciona una potencia óptica de enfoque de lejos en un intervalo comprendido entre aproximadamente 6 D y aproximadamente 34 D.

4. Lente según la reivindicación 1, en la que dicha estructura difractiva proporciona una potencia de adición en un 50 intervalo comprendido entre aproximadamente 2 D y aproximadamente 4 D.

5. Lente según la reivindicación 1, en la que dicha óptica está formada por un material biocompatible.

6. Lente según la reivindicación 5, en la que dicho material biocompatible comprende cualquiera de entre un acrílico 55 blando, silicona e hidrogel.

7. Lente oftálmica según cualquiera de las reivindicaciones anteriores, en la que dicha lente comprende una lente intraocular (IOL) .






Acerca de · Contacto · Patentados.com desde 2007 hasta 2014 // Última actualización: 24/07/2014.