PROCEDIMIENTO PARA LA ADSORCIÓN SELECTIVA DE FENOLES.

La presente invención se refiere a la utilización de óxidos de manganeso o sistemas mixtos basados en los mismos para la adsorción catalítica,

selectiva e irreversible de fenol disuelto en agua. Asimismo contempla la posibilidad de utilizar este proceso de adsorción catalítica, selectiva e irreversible para la eliminación de fenol de efluentes líquidos con recuperación del adsorbente, así como para la síntesis de nanopartículas esféricas de tamaño homogéneo. Por último, también se refiere a las nanopartículas obtenidas por este procedimiento y a su uso en diversas aplicaciones.

Tipo: Patente de Invención. Resumen de patente/invención. Número de Solicitud: P201000120.

Solicitante: UNIVERSIDAD DE CADIZ.

Nacionalidad solicitante: España.

Inventor/es: RODRIGUEZ-IZQUIERDO GIL,JOSE MARIA, DELGADO JAEN,JUAN JOSE, CAUQUI LÓPEZ,MIGUEL ANGEL, PEREZ OMIL,JOSE ANTONIO, OUAHBI,WIDAD, CALVINO GÁMEZ,JOSE JUAN, KOURAICHI,RAJAE, LÓPEZ CASTRO,JUAN DE DIOS.

Fecha de Publicación: .

Clasificación Internacional de Patentes:

  • B01D15/00 TECNICAS INDUSTRIALES DIVERSAS; TRANSPORTES.B01 PROCEDIMIENTOS O APARATOS FISICOS O QUIMICOS EN GENERAL.B01D SEPARACION (separación de sólidos por vía húmeda B03B, B03D, mesas o cribas neumáticas B03B, por vía seca B07; separación magnética o electrostática de materiales sólidos a partir de materiales sólidos o de fluidos, separación mediante campos eléctricos de alta tensión B03C; aparatos centrifugadores B04B; aparato de vórtice B04C; prensas en sí para exprimir los líquidos de las sustancias que los contienen B30B 9/02). › Procedimientos de separación que implican el tratamientos de líquidos con absorbentes sólidos; Aparatos para ello.
  • B01J23/889 B01 […] › B01J PROCEDIMIENTOS QUÍMICOS O FÍSICOS, p. ej. CATÁLISIS O QUÍMICA DE LOS COLOIDES; APARATOS ADECUADOS. › B01J 23/00 Catalizadores que contienen metales, óxidos o hidróxidos metálicos no previstos en el grupo B01J 21/00 (B01J 21/16 tiene prioridad). › Manganeso, tecnecio o renio.
  • C01G45/02 QUIMICA; METALURGIA.C01 QUIMICA INORGANICA.C01G COMPUESTOS QUE CONTIENEN METALES NO CUBIERTOS POR LAS SUBCLASES C01D O C01F (hidruros metálicos C01B 6/00; sales de oxácidos de halógenos C01B 11/00; peróxidos, sales de los perácidos C01B 15/00; tiosulfatos, ditionitos, politionatos C01B 17/64; compuestos que contienen selenio o teluro C01B 19/00; compuestos binarios del nitrógeno con metales C01B 21/06; azidas C01B 21/08; amidas metálicas C01B 21/092; nitritos C01B 21/50; fosfuros C01B 25/08; sales de los oxácidos del fósforo C01B 25/16; carburos C01B 32/90; compuestos que contienen silicio C01B 33/00; compuestos que contienen boro C01B 35/00; compuestos que tienen propiedades de tamices moleculares pero que no tienen propiedades de cambiadores de base C01B 37/00; compuestos que tienen propiedades de tamices moleculares y de cambiadores de base, p. ej. zeolitas cristalinas, C01B 39/00; cianuros C01C 3/08; sales del ácido ciánico C01C 3/14; sales de cianamida C01C 3/16; tiocianatos C01C 3/20; procesos de fermentación o procesos que utilizan enzimas para la preparación de elementos o de compuestos inorgánicos excepto anhídrido carbónico C12P 3/00; obtención a partir de mezclas, p. ej. a partir de minerales, de compuestos metálicos que son los compuestos intermedios de un proceso metalúrgico para la obtención de un metal libre C21B, C22B; producción de elementos no metálicos o de compuestos inorgánicos por electrólisis o electroforesis C25B). › C01G 45/00 Compuestos de manganeso. › Oxidos; Hidróxidos.
  • C02F1/28 C […] › C02 TRATAMIENTO DEL AGUA, AGUA RESIDUAL, DE ALCANTARILLA O FANGOS.C02F TRATAMIENTO DEL AGUA, AGUA RESIDUAL, DE ALCANTARILLA O FANGOS (procedimientos para transformar las sustancias químicas nocivas en inocuas o menos perjudiciales, efectuando un cambio químico en las sustancias A62D 3/00; separación, tanques de sedimentación o dispositivos de filtro  B01D; disposiciones relativas a las instalaciones para el tratamiento del agua, agua residual o de alcantarilla en los buques, p. ej. para producir agua dulce, B63J; adición al agua de sustancias para impedir la corrosión C23F; tratamiento de líquidos contaminados por radiactividad G21F 9/04). › C02F 1/00 Tratamiento del agua, agua residual o de alcantarilla (C02F 3/00 - C02F 9/00 tienen prioridad). › por absorción o adsorción (utilizando cambiadores de iones C02F 1/42; composiciones absorbentes o adsorbentes B01J).

PDF original: ES-2364013_A1.pdf

 


Fragmento de la descripción:

Procedimiento para la adsorción selectiva de fenoles.

Sector de la técnica El ámbito de aplicación de la presente invención es la aplicación de nanotecnología de catalizadores al sector de la depuración de aguas, en concreto a la eliminación de compuestos orgánicos tóxicos, como el fenol y sus derivados (cloro y nitro fenoles) , en efluentes líquidos y operando en condiciones suaves de reacción. Asimismo se trata de aplicar los mismos fundamentos de la eliminación del fenol en la formación nanopartículas de carbón.

Antecedentes de la invención El empleo de ciertos abonos y plaguicidas en la agricultura intensiva, así como los vertidos incontrolados de la actividad industrial, están provocando la progresiva contaminación de los principales recursos hídricos mundiales. Esta situación, unida a las actuales normativas medioambientales, ha provocado un creciente interés por el desarrollo de nuevas tecnologías para el tratamiento integral de aguas residuales. Cabe resaltar que el método más común es la degradación biológica. Este método consiste en transformar la materia orgánica del efluente en biomasa y finalmente en dióxido de carbono y agua. Para ello se emplean lodos activos, lechos bacterianos y biodiscos. La gran variedad de compuestos que se pueden tratar convierten a esta técnica en la más adecuada para el tratamiento de aguas residuales con orígenes diversos, como es el caso de las aguas residuales urbanas. No obstante, determinados compuestos con alto poder bacteriostático y bactericida, como es el caso del fenol, reducen drásticamente su efectividad hasta el punto de hacerlos inviables. Así, por ejemplo, en el caso del fenol se ha observado que concentraciones por encima de 70200 ppm resultan tóxicas para la población microbiana (R. Guerra: Chemosphere, 44, 1737, (2001) ; F. Luck: Catal. Today, 27, 195, (1996) ; F. Luck: Catal. Today, 53, 81, (1999) ; A. Santos, P. Yustos, A. Quintanilla, F. García Ochoa, J. A. Casas, and J. J. Rodrigues: Environ. Sci. Technol., 38, 133, (2004) ) . No obstante, estos métodos pueden ser empleados como complemento a otras técnicas previas que reduzcan la toxicidad y la concentración de este tipo de contaminantes.

Entre los procesos que pueden llegar a reducir la toxicidad de los efluentes se encuentran los procesos de adsorción. La eliminación de contaminantes orgánicos empleando distintos adsorbentes es reconocido como uno de los métodos más eficaces, empleándose comúnmente en las plantas de tratamiento de agua potable. El carbón activo es uno de los adsorbentes más versátiles, dada sus buenas propiedades adsorbentes para una amplia gama de contaminantes orgánicos (R. G. Peel and A. Benedek: Environmental Science & Technology, 14, 66, (2002) ; L. R. Radovic, C. Moreno-Castilla, and J. Rivera-Utrilla: Chem. Phys. Carbon, 27, 227, (2000) ) . No obstante, tras la saturación del adsorbente, éste pierde sus propiedades y su regeneración puede ser costosa. Uno de los procesos más comunes de regeneración supone la desorción de los compuestos previamente adsorbidos empleando un efluente líquido caliente. No obstante, tras dicho proceso debe de incluirse otro para eliminar el flujo pre-concentrado de contaminante. Por otra parte, los procesos de regeneración suelen conllevar pérdidas de actividad notable debido a la perdida de fase activa o la modificación de la misma (Y. I. Matatov-Meytal, M. Sheintuch, G. E. Shter, and G. S. Grader: Carbón, 35, 1527, (1997) ; N. Roostaei and F. H. Tezel: Journal of Environmental Management, 70, 157, (2004) ; M. Sheintuch and Y. I. Matatov-Meytal: Catalysis Today, 53, 73, (1999) ) .

Cabe destacar que algunos autores han encontrado que las capacidades de adsorción de fenol aumentan notablemente por la presencia de distintas impurezas en los carbones activos y condiciones oxidantes (L. J. Uranowski, C.

H. Tessmer, and R. D. Vidic: Water Res., 32, 1841, (1998) ) . En estos casos se observa que una parte de la adsorción es reversible, mientras que la otra es irreversible. Por tanto, esta adsorción irreversible es un proceso deseable puesto que aumenta notablemente la capacidad de eliminar el fenol en nuestro efluente. Sin embargo, las dificultades de eliminar dicho fenol adsorbido irreversiblemente en el adsorbente hacen imposible su reutilización y disminuye las posibilidades de su aplicabilidad en procesos reales.

Descripción de la invención Los datos obtenidos en nuestro laboratorio indican los óxidos de manganeso y sistemas mixtos basados en el mismo, bien sea soportados o formando composites, trabajando a temperaturas del orden de los 90-120ºC y presiones parciales de oxígeno del orden de 0.1-2 MPa., son capaces de catalizar la polimerización del fenol, así como del nitrofenol, del clorofenol o de una mezcla de los mismos, y la adsorción selectiva de los compuestos formados sobre la superficie del sólido. Esta adsorción es irreversible y es similar a la observada en carbones activos, la cual se describió anteriormente. Una vez dispuestos sobre la superficie, dichos compuestos pueden ser mineralizados simplemente por combustión in-situ. Este mecanismo en dos etapas podría constituirse en la base de una nueva tecnología de depuración de aguas basada en:

1) Adsorción irreversible por polimerización en la superficie del catalizador y 2) Combustión, in-situ, por calcinación a temperaturas inferiores a 200ºC.

Nuestros datos indican que la segunda etapa de calcinación produce la combustión total de la materia orgánica adsorbida en la superficie del catalizador, sin afectar sus propiedades, sirviendo de esta manera para la regeneración completa del mismo. Esta sería la principal ventaja del método propuesto, debido a que en los métodos de depuración de aguas empleando carbones activos los procesos de regeneración de estos materiales son complicados y costosos. Además, en este último caso no se eliminan realmente los residuos, sino que sólo se concentran en volúmenes inferiores de líquidos, siendo necesario un proceso de depuración posterior.

Actualmente disponemos de datos de la efectividad del método al emplear sistemas basados en los distintos óxidos de manganeso soportados en varios materiales como SiO2, Al2O3, CeO2, CeZrOx. Igualmente, también se han estudiado nano-composites de óxidos de Ce-Mn. No obstante, similares resultados son esperables al emplear otros materiales como soportes o composites. Son especialmente interesantes los sólidos con altas superficie específica del tipo de carbones activos, la SB15 y otros soportes nano-estructurados.

En la figura 1, a modo de ejemplo, se muestra la eliminación de carbono total por gramo de catalizador en función del tiempo en ensayos donde se emplearon distintas relaciones de concentración inicial de fenol y cantidad de un catalizador CeMnOx. Puede observarse que en todos los casos, con la excepción del ensayo realizado con 500 ppm de fenol, se consiguen resultados similares que indican que el catalizador sólo puede eliminar unos 1000 ppm del fenol presente en la disolución. En la Figura 2 se muestran los miligramos de carbono encontrados por gramos de catalizador tras los ensayos mostrados en la figura 1. Es obvio que la muestra es capaz de adsorber un contenido máximo de carbono por gramo de catalizador de 255 mg (equivalente a unos 1000 ppm de fenol) , produciéndose su posterior desactivación. Por otra parte, el estudio mediante microscopía electrónica de la muestra tras reacción permitió observar cómo todas las partículas del catalizador se encuentran completamente cubiertas de una película amoría, de unos 20 nm de espesor, la cual se corresponde con el depósito carbonoso (Figura 3) .

Por su parte, estudios de oxidación térmica programada han permitido determinar que este depósito carbonoso puede eliminarse fácil y rápidamente mediante un tratamiento de oxidación al aire a temperaturas inferiores a 250ºC (Figura 3) . La figura 4 representa un ensayo de actividad catalítica de la muestra fresca y de la muestra desactivada y posteriormente regenerada. Puede observarse que la muestra es totalmente regenerada. Por consiguiente es lógico proponer un sistema de eliminación de fenol en el que se incluya esta fase de regeneración, en la cual tendría lugar la combustión real de la materia orgánica. Se trataría, por tanto, de procesos combinados que implicarían una primera fase donde los contaminantes tras sufrir un proceso de polimerización se adsorberían en el óxido, y una segunda etapa en la cual se sometería al catalizador a un tratamiento de calcinación que conduciría a la oxidación del residuo carbonoso.

En... [Seguir leyendo]

 


Reivindicaciones:

1. Procedimiento para la adsorción catalítica, selectiva e irreversible de fenoles disueltos en agua caracterizada por el empleo como adsorbente de óxidos de manganeso o sistemas mixtos basados en los mismos, bien sean soportados o formando composites.

2. Procedimiento para la adsorción catalítica, selectiva e irreversible de fenoles disueltos en agua que comprende:

◦ La puesta en contacto de la disolución con un óxido de manganeso o un sistema mixto basado en el mismo, bien sea soportado o formando composites, en un reactor a temperaturas del orden de los 90120ºC y presiones parciales de oxígeno del orden de 0.1-2 MPa.

◦ La adsorción irreversible del fenol por polimerización en la superficie del óxido.

3. Procedimiento para la adsorción catalítica, selectiva e irreversible de fenoles disueltos en agua según reivindicaciones1y2, caracterizado porque el óxido utilizado es un óxido de manganeso masivo o soportado sobre un material que se selecciona entre SiO2, Al2O3, CeO2, CeZrOx o carbón activo.

4. Procedimiento para la adsorción catalítica, selectiva e irreversible de fenoles disueltos en agua según reivindicaciones1y2, caracterizado porque el catalizador utilizado es un nanocomposite de óxido de Ce-Mn.

5. Procedimiento para la adsorción catalítica, selectiva e irreversible de fenoles disueltos en agua según reivindicaciones 1 a 4, caracterizado porque la sustancia fenólica que se adsorbe sobre el óxido es un fenol, un nitrofenol, un clorofenol o una mezcla de los mismos.

6. Procedimiento de eliminación selectiva de fenoles en efluentes líquidos que comprende:

◦ La adsorción catalítica selectiva e irreversible de los mismos según reivindicaciones1a2

◦ La combustión, in-situ, por calcinación del residuo carbonoso a temperaturas inferiores a 200ºC y recuperación de las propiedades adsorbentes.

7. Procedimiento de eliminación selectiva de fenoles en efluentes líquidos según reivindicación 6, caracterizado porque para la recuperación de las propiedades adsorbentes pueden emplearse bien reactores discontinuos, bien reactores paralelos que funcionen alternativamente.

8. Procedimiento para la síntesis de nanopartículas esféricas de Mn y carbón con una distribución homogénea de tamaño que comprende:

◦ Reducir un sólido basado en óxido de manganeso, soportado o masivo (incluidos los composites de Ce-Mn) , mediante un tratamiento con hidrógeno hasta conversión total a monóxido de manganeso, o Introducir este material en una disolución acuosa de fenol (500-5000 ppm) a presiones y temperaturas moderadas (0.5-4.0 MPa .

8. 200ºC) .

◦ Purificación de las nanopartículas obtenidas mediante digestión química.

9. Nanopartículas obtenidas mediante el procedimiento descrito en la reivindicación 8.

10. Uso de las nanopartículas obtenidas mediante el procedimiento descrito en la reivindicación 8 como catalizadores, como soporte de catalizadores, como tamices moleculares o como sustitutivo de carbón activo.


 

Patentes similares o relacionadas:

UN PROCESO HIDROTERMAL PARA SINTETIZAR UN MATERIAL ZEOLÍTICO COMPUESTO DE CLINOPTILOLITA Y PHILLIPSITA, ÚTIL PARA LA REMOCIÓN DE ARSÉNICO DESDE AGUA POTABLE., del 9 de Julio de 2020, de UNIVERSIDAD DE CONCEPCION: Un proceso hidrotermal para sintetizar un material zeolítico compuesto de clinoptilolita y phillipsita, útil para la remoción de arsénico desde agua potable, […]

PROCESO Y PLANTA DE TRATAMIENTO MICROBIOLÓGICO DE CONTAMINANTES BIFENILO Y ÓXIDO DE DIFENILO PROCEDENTES DE ACEITES TÉRMICOS, del 15 de Junio de 2020, de KEPLER, INGENIERIA Y ECOGESTION, S.L.: La invención proporciona un proceso y una planta de tratamiento de aguas contaminadas por HTF, esencialmente bifenilo y óxido de difenilo, que permite obtener […]

RED HÍBRIDA METAL-ORGÁNICA MULTIVARIANTE CONSTITUIDA POR DOS METALES Y LIGANDOS OXAMIDATO DIFERENTES Y SU UTILIZACIÓN COMO ADSORBENTE SIMULTÁNEO DE CONTAMINANTES INORGÁNICOS Y ORGÁNICOS, del 4 de Junio de 2020, de UNIVERSITAT DE VALENCIA: La presente invención se refiere a una red híbrida metal-orgánica multivariante constituida por dos metales diferentes (M1 y M2) con al menos dos ligandos oxamidato diferentes […]

RED HÍBRIDA METAL-ORGÁNICA MULTIVARIANTE CONSTITUIDA POR DOS METALES Y LIGANDOS OXAMIDATO DIFERENTES Y SU UTILIZACIÓN COMO ADSORBENTE SIMULTÁNEO DE CONTAMINANTES INORGÁNICOS Y ORGÁNICOS, del 2 de Junio de 2020, de UNIVERSITAT DE VALENCIA: La presente invención se refiere a una red híbrida metal-orgánica multivariante constituida por dos metales diferentes (M1 y M2) con al menos dos […]

COMPOSICIÓN Y MÉTODO DE PURIFICACIÓN. DESINFECCIÓN Y CLARIFICACIÓN DE AGUAS, del 22 de Mayo de 2020, de VARGAS VARGAS, Jorge Javier: La invención corresponde a una composición para el tratamiento de aguas contaminadas y el método para el tratamiento de aguas correspondiente. En […]

Dispositivo móvil para la purificación de aguas residuales de una limpieza de fachada, del 13 de Mayo de 2020, de FUCHS, PETER: Dispositivo de filtro para la purificación de aguas residuales de una limpieza de fachada con un recipiente de filtro abierto en la parte superior o […]

Material para la desacidificación y/o el endurecimiento de líquidos, procedimiento para su preparación así como usos, del 29 de Abril de 2020, de RHEINKALK GMBH: Material para la desacidificación, la filtración y/o el endurecimiento de líquidos, que contiene al menos el 97 % en peso de carbonato de metal alcalinotérreo, en donde el contenido […]

Aparato para el tratamiento de agua o líquidos en general, del 22 de Abril de 2020, de Feelfree Srl: Un aparato para el tratamiento de agua o líquidos en general, que comprende: un dispositivo de filtración de ósmosis inversa provisto de al menos una entrada asociada […]

Utilizamos cookies para mejorar nuestros servicios y mostrarle publicidad relevante. Si continua navegando, consideramos que acepta su uso. Puede obtener más información aquí. .