Características de optimización de un campo eléctrico para aumentar el efecto del campo sobre las células que proliferan.

Un aparato para aplicar un campo eléctrico terapéutico en una zona de un paciente,

el aparato comprende:

un primer par de electrodos aislados (11) configurados para su colocación contra el cuerpo del paciente;

un segundo par de electrodos aislados (12) configurados para su colocación contra el cuerpo del paciente;

un generador (43, 44) de señales de control periódicas que genera una señal (21, 22, 23, 24) de control periódica con unos estados de salida primero y segundo, en donde la duración (t1) del primer estado de salida está entre 20 y 500 ms y la duración (t2) del segundo estado de salida está entre 20 y 500 ms;

un generador (41) de señales de CA que genera una primera señal de CA que tiene una intensidad de campo de al menos 1 V/cm y una frecuencia entre 50 y 500 kHz a través del primer par de electrodos (11) cuando la señal de control (21; 23) está en el primer estado de salida, y una segunda señal de CA que tiene una intensidad de campo de al menos 1 V/cm y una frecuencia entre 50 y 500 kHz a través del segundo par de electrodos (12) cuando la señal de control (22; 24) está en el segundo estado de salida, en donde la conmutación entre la generación de la primera señal de CA a través del primer par de electrodos (11) y la segunda señal de CA a través del segundo par de electrodos (12) se proporciona conmutando entre los estados de salida primero y segundo.

Tipo: Patente Internacional (Tratado de Cooperación de Patentes). Resumen de patente/invención. Número de Solicitud: PCT/IB2006/002713.

Solicitante: NOVOCURE LTD.

Nacionalidad solicitante: Israel.

Dirección: MATAM CENTER P.O. BOX 15022 319805 HAIFA ISRAEL.

Inventor/es: PALTI, YORAM.

Fecha de Publicación: .

Clasificación Internacional de Patentes:

  • A61N1/32 NECESIDADES CORRIENTES DE LA VIDA.A61 CIENCIAS MEDICAS O VETERINARIAS; HIGIENE.A61N ELECTROTERAPIA; MAGNETOTERAPIA; RADIOTERAPIA; TERAPIA POR ULTRASONIDOS (medida de corrientes bioeléctricas A61B; instrumentos quirúrgicos, dispositivos o métodos para transferir formas no mecánicas de energía hacia o desde el cuerpo A61B 18/00; aparatos de anestesia en general A61M; lámparas incandescentes H01K; radiadores de infrarrojos utilizados como calefactores H05B). › A61N 1/00 Electroterapia; Circuitos correspondientes (A61N 2/00  tiene prioridad; preparaciones conductoras de la electricidad que se utilizan en terapia o en examen in vivo A61K 50/00). › corrientes alternas o intermitentes.
  • A61N1/40 A61N 1/00 […] › Aplicación de campos eléctricos por acoplamiento inductivo o capacitivo.

PDF original: ES-2534488_T3.pdf

 


Fragmento de la descripción:

Características de optimización de un campo eléctrico para aumentar el efecto del campo sobre las células que proliferan Antecedentes Los documentos US-A-6.868.289, US-A-7.016.725 y US-A-2005/0209640 describen unos métodos y aparatos para tratar tumores mediante el uso de campos eléctricos de CA en el intervalo de 1-10 V/cm, en unas frecuencias entre 50 kHz y 500 kHz, y la efectividad de dichos campos se incrementa cuando se usa más de una dirección del campo (por ejemplo, cuando el campo es conmutado entre dos o tres direcciones que están orientadas separadas aproximadamente 90º una de otra) . Estos campos eléctricos alternos se denominan aquí Campos de Tratamiento de Tumores, o Campos TT.

El documento UA-A-2005/0113820 describe un generador electroquirúrgico que comprende un medio para conmutar entre dos formas de onda diferentes (corte y coagulación) .

Compendio de la invención La efectividad de los Campos TT en la detención de la proliferación de y la destrucción de las células vivas que proliferan rápidamente (por ejemplo, las células cancerosas) puede ser mejorada eligiendo la velocidad a la que el campo es conmutado entre las diversas direcciones.

En consecuencia, la presente invención proporciona un aparato para aplicar un campo eléctrico terapéutico a una zona objetivo de un paciente, el aparato comprende: un primer par de electrodos aislados configurados para su colocación contra el cuerpo del paciente, un segundo par de electrodos aislados configurados para su colocación contra el cuerpo del paciente; un generador de señales de control periódicas para generar una señal de control periódica con unos estados de salida primero y segundo, en donde la duración del primer estado de salida está entre 20 y 500 ms y la duración del segundo estado de salida está entre 20 y 500 ms; un generador de señales de CA para generar una primera señal de CA que tiene una intensidad de campo de al menos 1 V/cm y una frecuencia entre 50 y 500 kHz a través del primer par de electrodos cuando la señal de control está en el primer estado de salida, y una segunda señal de CA que tiene una intensidad de campo de al menos 1 V/cm y una frecuencia entre 50 y 500 kHz a través del segundo par de electrodos cuando la señal de control está en el segundo estado de salida, en donde la conmutación entre la generación de la primera señal de CA a través del primer par de electrodos y la segunda señal de CA a través del segundo par de electrodos se proporciona conmutando entre los estados de salida primero y segundo.

Breve descripción de los dibujos La Figura 1 es una representación esquemática de dos pares de electrodos aislados que alternados aplican unos Campos TT a una zona objetivo.

La Figura 2 muestra unos ejemplos de formas de onda que son apropiadas para conmutar los campos que se aplican entre los electrodos conectados y desconectados.

La Figura 3 representa los cambios en la velocidad de crecimiento de un cultivo de células de glioma tratadas con campos eléctricos alternos conmutados entre dos direcciones a diferentes velocidades de conmutación.

La Figura 4 es un gráfico del volumen de un tumor en relación con el tiempo de los campos que fueron conmutados entre dos direcciones a velocidades de conmutación diferentes.

La Figura 5 es un diagrama de bloques de un sistema para generar los Campos TT en direcciones diferentes.

La Figura 6 ilustra una forma de onda preferida para impulsar los electrodos.

Descripción detallada de las realizaciones preferidas Como los campos eléctricos se suman como vectores, dos o más campos con direcciones diferentes no pueden ser aplicados simultáneamente en un lugar dado. En lugar de ello, las direcciones del campo diferentes deben ser aplicadas secuencialmente, aplicando un primer campo en una dirección durante un cierto período de tiempo t1, y a continuación aplicando un segundo campo en otra dirección durante un período t2. Durante t2 el primer campo no está activo y durante t1 el segundo campo está inactivo. Cuando este ciclo se repite una y otra vez, el resultado es que los impulsos del campo secuenciales de las direcciones que cambian se aplican de una manera cíclica.

El inventor ha decidido que la efectividad de los Campos TT para destruir las células que proliferan en el cultivo del tejido así como los tumores malignos en animales experimentales depende de la velocidad de conmutación entre las diversas direcciones en las que se aplican los campos. En un conjunto de experimentos, los Campos TT se aplicaron a los cultivos de tejido o animales experimentales por medio de dos pares 11, 12 de electrodos aislados que alternativamente aplican unos Campos TT 15, 16 normales entre sí, mostrados esquemáticamente en la Figura 2

1. Las formas de onda aplicadas fueron campos alternos modulados de 100-200 kHz para permanecer en Conectado y Desconectado en duraciones del semiciclo que van de 10 ms a 100 ms.

La Figura 2 muestra dos ejemplos de formas de onda que son apropiadas para modular las señales de CA que fueron aplicadas entre los electrodos: un primer par A de formas de onda 21, 22 de un 50% del ciclo de trabajo desplazadas temporalmente una con respecto a otra de tal modo que una está conectada cuando la otra está desconectada, y un segundo par B de formas de onda 23, 24 del 50% del ciclo de trabajo que es similar al primer conjunto de formas de onda, pero conmutadas al doble de la frecuencia. Hay que tener en cuenta que cada conjunto de formas de onda consta de dos ondas cuadradas de un 50% del ciclo de trabajo que están desplazadas en fase una mitad de un ciclo entre sí.

La Figura 3 representa los resultados de un conjunto de experimentos dibujando los cambios de la velocidad de crecimiento de un cultivo (F98) de células de glioma tratadas con unas formas de onda del campo eléctrico alterno de 200 kHz conmutadas entre dos direcciones a velocidades de conmutación diferentes. Los datos experimentales fueron también obtenidos para el caso en el que el campo fue aplicado de forma continua solamente en una dirección. (Hay que tener en cuenta que la línea de base del 100% es para el caso en el que no se aplicó un campo) . Los datos muestran que algunas frecuencias de conmutación son más efectivas que otras para reducir la proliferación de células del glioma en el cultivo. La máxima efectividad tuvo lugar cuando la duración del semiciclo (con una duración de Desconexión similar) fue la de una forma de onda de 50 ms. No obstante, las diferencias en la efectividad en el intervalo de 250 ms a 50 ms fueron pequeñas. Dentro de este intervalo, la velocidad de proliferación de las células se redujo en aproximadamente la mitad de lo que lo fue cuando se aplicó un campo continuo, o cuando se usó una forma de onda con una duración de 1.000 ms del semiciclo.

La Figura 4 es un gráfico del volumen de un tumor en relación con el tiempo de un conjunto de experimentos, y muestra el efecto de los Campos TT de 200 kHz sobre un carcinoma Vx2 crecido in vivo, cuando los campos fueron aplicados en dos direcciones diferentes a velocidades de conmutación diferentes. En el experimento, los tumores procedentes de la línea de carcinoma Vx2 fueron inoculados debajo de la cápsula del riñón en conejos. Como se esperaba, el tamaño del tumor aumenta con el tiempo durante el período de seguimiento de 4 semanas en el grupo de conejos (curva 31) de control no tratados. La velocidad de crecimiento fue más lenta cuando los campos se aplicaron en diferentes direcciones con una conmutación en la dirección cada 1.000 ms (curva 32) ; y la velocidad de crecimiento fue incluso más lenta cuando la dirección del campo fue conmutada cada 250 ms (curva 33) o cada 50 ms (curva 34) . De este modo vemos que la efectividad del tratamiento es significativamente mayor para una forma de curva que tiene unas duraciones del semiciclo de trabajo de entre 50 y 250 ms, en comparación con los semiciclos de 1.000 ms.

Basado en lo anterior, el siguiente enfoque está recomendado para el tratamiento de tumores con Campos TT: el tratamiento debería ser realizado con al menos dos direcciones del campo, de modo que cada par de electrodos fuera activado para períodos Conectado de una duración que estuviera preferiblemente entre 50 y 250 ms, interpuestos por períodos de Desconexión de una duración similar. La frecuencia de alternancia básica de los Campos TT (que corresponde a la frecuencia portadora en un sistema de modulación de la amplitud) debería preferiblemente estar en el intervalo de 50â?"500 kHz, y más preferiblemente en el intervalo de 100-200 kHz. La intensidad del campo es preferiblemente al menos 1 V/cm, y más preferiblemente entre 1 y 10 V/cm.

La Figura 5 es un diagrama de bloques de un sistema... [Seguir leyendo]

 


Reivindicaciones:

1. Un aparato para aplicar un campo eléctrico terapéutico en una zona de un paciente, el aparato comprende:

un primer par de electrodos aislados (11) configurados para su colocación contra el cuerpo del paciente;

un segundo par de electrodos aislados (12) configurados para su colocación contra el cuerpo del paciente;

un generador (43, 44) de señales de control periódicas que genera una señal (21, 22, 23, 24) de control periódica con unos estados de salida primero y segundo, en donde la duración (t1) del primer estado de salida está entre 20 y 500 ms y la duración (t2) del segundo estado de salida está entre 20 y 500 ms;

un generador (41) de señales de CA que genera una primera señal de CA que tiene una intensidad de campo de al menos 1 V/cm y una frecuencia entre 50 y 500 kHz a través del primer par de electrodos (11) cuando la señal de control (21; 23) está en el primer estado de salida, y una segunda señal de CA que tiene una intensidad de campo de al menos 1 V/cm y una frecuencia entre 50 y 500 kHz a través del segundo par de electrodos (12) cuando la señal de control (22; 24) está en el segundo estado de salida, en donde la conmutación entre la generación de la primera señal de CA a través del primer par de electrodos (11) y la segunda señal de CA a través del segundo par de electrodos (12) se proporciona conmutando entre los estados de salida primero y segundo.

2. El aparato de la reivindicación 1, en donde la duración (t1) del primer estado de salida está entre 20 y 250 ms y la duración (t2) del segundo estado de salida está entre 20 y 250 ms.

3. El aparato de la reivindicación 1, en donde la duración (t1) del primer estado de salida está entre 50 y 250 ms y la duración (t2) del segundo estado de salida está entre 50 y 250 ms.

4. El aparato de la reivindicación 1, en donde la duración (t1) del primer estado de salida es 50 ms y la duración (t2) del segundo estado de salida es 50 ms.

5. El aparato de la reivindicación 1, en donde la duración (t1) del primer estado de salida es 250 ms y la duración (t2) del segundo estado de salida es 250 ms.

6. El aparato de la reivindicación 1, en donde las señales de CA primera y segunda tienen una frecuencia entre 100 y 200 kHz.

7. El aparato de la reivindicación 1, en donde las duraciones (t1, t2) de los estados de salida primero y segundo representan cada una un 50% del ciclo de trabajo.

8. El aparato de la reivindicación 1, en donde el generador (43, 44) de señales de control comprende un generador de onda cuadrada que genera una señal de onda cuadrada.

9. El aparato de la reivindicación 1, en donde la señal de control (21, 22; 23, 24) comprende unas formas de onda de las señales de control primera y segunda, la forma de onda de la primera señal de control proporciona el primer estado de salida y la forma de onda de la segunda señal de control proporciona el segundo estado de salida.

10. El aparato de la reivindicación 1, en donde el generador (41) de señales de control de CA comprende una única fuente de señales y un conmutador (42) que distribuye una salida de la única fuente de señales bien al primer par de electrodos (11) o al segundo par de electrodos (12) .

11. El aparato de la reivindicación 1, en donde el generador (41) de señales de control de CA comprende una primera fuente de señales conectada operativamente al primer par de electrodos (11) y una segunda fuente de señales operativamente conectada al primer par de electrodos (12) .

12. El aparato de la reivindicación 1, en donde la conmutación entre los estados de salida primero y segundo se realiza mientras que la señal de CA está desconectada, y la señal de CA se conecta inmediatamente después de la conmutación entre los estados de salida primero y segundo.

13. El aparato de la reivindicación 12, en donde la señal de CA es conectada y desconectada a una velocidad que es lenta con relación a la recíproca de la frecuencia de la señal de CA y rápida en relación con la duración (t1, t2) del estado de salida.

14. El aparato de la reivindicación 12, en donde la señal de CA es conectada y desconectada a una velocidad que es tal para que se alcance el 90% de los valores del estado estacionario dentro de un período de 1 a 5 ms.

 

Patentes similares o relacionadas:

Sistema de estimulación dinámica del crecimiento óseo, del 15 de Julio de 2020, de Intelligent Implants Limited: Un sistema de estimulación eléctrica en un implante ortopédico que comprende: (i) al menos un componente implantable que comprende: un cuerpo de implante de […]

Matriz polimérica adhesiva para iontoforesis y dispositivo para iontoforesis que comprende dicha matriz, del 17 de Junio de 2020, de Feeligreen: Matriz polimérica adhesiva para el suministro de principio activo para iontoforesis que presenta una primera cara destinada a ser aplicada […]

Dispositivo eléctrico con depósito deformable y conductor, del 27 de Mayo de 2020, de L'OREAL: Dispositivo de tratamiento cosmético de materiales queratinosos humanos, con la ayuda de una corriente eléctrica, que comprende al menos: - un sistema de fuente de alimentación, […]

Dispositivo de iontoforesis con pieza de extremo multi-electrodo, del 27 de Mayo de 2020, de L'OREAL: Pieza de extremo destinada a equipar un dispositivo para el tratamiento cosmético de materiales de queratina con una corriente eléctrica, comprendiendo […]

Sistemas para electroporación mejorada basada en la detección de tejidos, del 20 de Mayo de 2020, de OncoSec Medical Incorporated: Un dispositivo para la administracion de restos terapeuticos a las celulas en una zona de tratamiento de un tejido, dicho dispositivo que comprende: a) una sonda […]

DISPOSITIVO PARA EL TRATAMIENTO DE ENFERMEDADES DEGENERATIVAS, del 7 de Mayo de 2020, de VIRBECO SOLUTIONS, S.L: Dispositivo para el tratamiento de enfermedades degenerativas que conllevan inflamación que incluye un generador de corriente eléctrica que comprende […]

Imagen de 'Lámina de microagujas'Lámina de microagujas, del 25 de Marzo de 2020, de HISAMITSU PHARMACEUTICAL CO. INC.: Método para preparar una lámina de microagujas con microagujas elevadas , que comprende las etapas que consisten en: proporcionar una lámina […]

Dispositivo iontoforético con gestión de corriente independiente, del 22 de Enero de 2020, de L'OREAL: Dispositivo para el tratamiento cosmético de materiales de queratina con corriente eléctrica, que comprende: - una pieza terminal que comprende al […]

Utilizamos cookies para mejorar nuestros servicios y mostrarle publicidad relevante. Si continua navegando, consideramos que acepta su uso. Puede obtener más información aquí. .