COLECTOR SOLAR CILINDRO PARAMÉTRICO CON RECONCENTRADOR SECUNDARIO OPTIMIZADO Y SU PROCEDIMIENTO DE DISEÑO.

Colector cilindro paramétrico con reconcentrador secundario optimizado y su procedimiento de diseño,

donde la geometría del reflector primario es una evolución del concepto de colector Helmet hacia una curva discontinua que permite aumentar la concentración C/Cmax a más de 0.52 así como reducir las cargas de viento. La estructura está optimizada para soportar las diferentes cargas a las que está sometido el colector. El centro de gravedad del colector se aproxima al eje de giro del colector. La geometría del reconcentrador secundario está optimizada y la eficiencia de colección del colector es del 100%. El reconcentrador secundario se obtiene espejando parcialmente el tubo de vidrio que mantiene el vacío en el tubo absorbedor.

Tipo: Patente de Invención. Resumen de patente/invención. Número de Solicitud: P200902422.

Solicitante: AGENGOA SOLAR NEW TECHNOLOGIES, S.A.

Nacionalidad solicitante: España.

Inventor/es: NÚÑEZ BOOTELLO,JUAN PABLO.

Fecha de Publicación: .

Clasificación Internacional de Patentes:

  • F24J2/10
  • G02B5/10 FISICA.G02 OPTICA.G02B ELEMENTOS, SISTEMAS O APARATOS OPTICOS (G02F tiene prioridad; elementos ópticos especialmente adaptados para ser utilizados en los dispositivos o sistemas de iluminación F21V 1/00 - F21V 13/00; instrumentos de medida, ver la subclase correspondiente de G01, p. ej. telémetros ópticos G01C; ensayos de los elementos, sistemas o aparatos ópticos G01M 11/00; gafas G02C; aparatos o disposiciones para tomar fotografías, para proyectarlas o para verlas G03B; lentes acústicas G10K 11/30; "óptica" electrónica e iónica H01J; "óptica" de rayos X H01J, H05G 1/00; elementos ópticos combinados estructuralmente con tubos de descarga eléctrica H01J 5/16, H01J 29/89, H01J 37/22; "óptica" de microondas H01Q; combinación de elementos ópticos con receptores de televisión H04N 5/72; sistemas o disposiciones ópticas en los sistemas de televisión en colores H04N 9/00; disposiciones para la calefacción especialmente adaptadas a superficies transparentes o reflectoras H05B 3/84). › G02B 5/00 Elementos ópticos distintos de las lentes (guías de luz G02B 6/00; elementos ópticos lógicos G02F 3/00). › de superficies curvas.
COLECTOR SOLAR CILINDRO PARAMÉTRICO CON RECONCENTRADOR SECUNDARIO OPTIMIZADO Y SU PROCEDIMIENTO DE DISEÑO.

Fragmento de la descripción:

Colector solar cilindro paramétrico con reconcentrador secundario optimizado y su procedimiento de diseño.

Sector técnico de la invención

La invención se encuadra en el sector técnico de la tecnología termosolar, más concretamente en los sistemas de concentradores lineales de tipo cilíndrico.

Antecedentes de la invención

El principio general de la tecnología termosolar está basada en el concepto de la concentración de la radiación solar para calentar un fluido caloportador y generar electricidad.

La captación de energía solar y su concentración es uno de los mayores retos en el desarrollo de plantas termosolares. Existen principalmente dos tipos de tecnologías de concentradores: la concentración puntual y la concentración lineal. La lineal es más fácil de instalar al tener menos grados de libertad, pero tiene un factor de concentración menor y por lo tanto puede alcanzar menores temperaturas que la tecnología de concentración puntual.

Dentro de los concentradores puntuales se distinguen los concentradores de disco parabólicos y las centrales de torre. Dentro de la tecnología lineal, el Concentrador Cilindro Parabólico (CCP) es el sistema de concentración más maduro y ahora empiezan a surgir los nuevos Colectores Lineales tipo Fresnel (CLF).

Los colectores Fresnel están compuestos por un sistema primario y un secundario. El primario lo forman una serie de filas paralelas de espejos reflectores, planos o ligeramente curvados, con estructuras móviles que son los que se encargan de emitir y orientar la radiación solar al secundario. La radiación llega a la apertura del secundario y es redireccionada por unos espejos a un "tubo" focal imaginario que es donde se coloca el tubo absorbedor.

Este sistema secundario queda elevado sobre el campo de espejos a varios metros de altura y se encarga de reconcentrar la radiación solar que emite el primario y direccionarla hacia un tubo absorbedor.

La tecnología cilindro-parabólica es una tecnología más madura y con un extenso historial que demuestra estar preparada para la instalación a gran escala. Esta tecnología lleva siendo instalada a nivel comercial desde los años 80 con un excepcional comportamiento. Desde entonces, ha experimentado importantes mejoras a nivel de costes y rendimientos. Actualmente hay 300 MWs en operación, 400 en construcción y alrededor de 6 GWs en promoción a nivel mundial.

La tecnología cilindro-parabólica basa su funcionamiento en seguimiento solar y en la concentración de los rayos solares en unos tubos receptores de alta eficiencia térmica localizados en la línea focal de los colectores cilindro parabólicos. En estos tubos, un fluido transmisor de calor, tal como aceite sintético, es calentado a aproximadamente 400ºC por los rayos solares concentrados. Este aceite es bombeado a través de una serie de intercambiadores de calor para producir vapor sobrecalentado. El calor presente en este vapor, se convierte en energía eléctrica mediante una turbina de vapor convencional y un alternador.

Los componentes principales del campo solar de la tecnología cilindro-parabólica son:

• El reflector cilindro-parabólico: La misión del reflector cilindro parabólico es reflejar y concentrar sobre el tubo absorbedor la radiación solar directa que incide sobre la superficie. La superficie especular se consigue a través de películas de plata o aluminio depositadas sobre un soporte que le da la suficiente rigidez. En la actualidad los medios de soporte más utilizados son la chapa metálica, el vidrio y el plástico. Se denomina reflector primario.

• El tubo absorbedor: Por lo general, el tubo absorbedor consta de dos tubos concéntricos separados por una capa de vacío. El interior, por el que circula el fluido que se calienta es metálico y el exterior de cristal. El fluido de trabajo que circula por el tubo interior es diferente según la tecnología. Para bajas temperaturas (< 200ºC) se suele utilizar agua desmineralizada con Etileno-Glicol mientras que para mayores temperaturas (200ºC < T < 450ºC) se utiliza aceite sintético. Las últimas tecnologías permiten la generación directa de vapor sometiendo a alta presión a los tubos o bien la utilización de sales como fluido caloportante.

• El sistema de seguimiento del sol: El sistema seguidor más común consiste en un dispositivo que gira los reflectores cilindro-parabólicos del colector alrededor de un eje longitudinal, de manera que los rayos incidan siempre perpendiculares a este eje y paralelos al eje óptico de la parábola.

• La estructura metálica: La misión de la estructura del colector es la de dar rigidez al conjunto de elementos que lo componen.

En el caso del colector cilindro parabólico actual todos los rayos que llegan a la parábola dentro del ángulo de incidencia de diseño, son reflejados al tubo absorbedor. La eficiencia de colección de este concentrador, definida como la fracción de potencia incidente dentro del ángulo de aceptancia del primario, que alcanza el tubo absorbedor es del 100%. Es posible comprobar que la concentración del colector cilindro parabólico actual ronda los 26 soles mientras que el segundo principio de la termodinámica permite afirmar que es posible alcanzar los 83 soles. Quiere decir que, teóricamente, la concentración del colector actual podría aumentarse aún 3.19 veces manteniendo el mismo ángulo de aceptancia.

A lo largo de la historia reciente se han realizado diferentes intentos de aumentar la concentración de los colectores cilindro parabólicos mediante el uso de reconcentradores secundarios. De entre ellos se ha demostrado que es posible alcanzar la concentración máxima con una eficiencia de colección del 100% con el reconcentrador tipo CPC (Compound Parabolic Concentrator) para receptor tubular. Sin embargo, desde el punto de vista práctico, este reconcentrador presenta algunos inconvenientes importantes que penalizan su utilización. En unos casos el secundario junto con el tubo absorbedor deben alejarse de la parábola primaria; y en otros se generan geometrías de secundario complejas y difíciles de fabricar. El inconveniente más importante es, sin embargo, que el reconcentrador debe mantenerse en contacto o muy cerca del tubo absorbedor lo cual obliga a los diseñadores a localizar el reconcentrador dentro del tubo de vidrio que mantiene el vacío o a irse a soluciones sin vacío y sin tubo de vidrio, conceptos ya probados en algunos concentradores tipo fresnel. Algo similar le ocurriría con reconcentradores tipo TERC (Tailored Edge Ray Concentrator).

El uso de reconcentradores tipo CPC o tipo TERC son, por tanto, más justificables desde el punto de vista de colectores fresnel en los que el secundario queda estático y desvinculado mecánicamente del primario, en los que es posible irse a mayores separaciones entre el primario y el secundario y/o en los que es posible aislar térmicamente el conjunto sin utilizar vacío sirviéndose, en parte, del propio reconcentrador secundario. Otras ventajas tradicionalmente esgrimidas a favor del colector fresnel son que este tipo de colectores permiten reducir el coste en estructura, entre otros, debido a una reducción de las cargas de viento actuantes sobre los espejos primarios tras la discretización del primario en tramos más pequeños y que la radiación solar le llega al tubo en todo su perímetro reduciendo las tensiones térmicas a las que está sometido.

Volviendo a los colectores cilindro parabólicos, otra de las mejoras y que supone el antecedente más cercano de la invención reivindicada, es una publicación (Benitez et al., 1997) en la que se presentan dos nuevos tipos de concentradores solares para receptores tubulares, denominados "Snail concentrator" y "Helmet concentrator", cuya principal característica es que existe un espacio o hueco entre el reconcentrador secundario y el tubo absorbedor, lo cual permite aprovecharse del tubo de vidrio para espejar una parte de su perímetro interior y generar el reconcentrador secundario. Una de las diferencias entre el colector Snail (llamado así por la forma de caracol del reconcentrador secundario) y el colector Helmet (llamado así por la forma de casco del secundario) es que este último es simétrico (como los concentradores parabólicos convencionales) mientras que el primero no lo es.

El hecho diferencial e innovador de estos diseños es que ya no se obliga al reflector primario a tener una geometría parabólica; pero no se describe el método (al menos los inventores no lo han...

 


Reivindicaciones:

1. Colector solar cilindro paramétrico con reconcentrador secundario optimizado, formado por un reflector primario discontinuo y simétrico de geometría no parabólica en su totalidad y por la estructura soporte, caracterizado porque:

- el reflector primario discontinuo comprende como mínimo dos tramos simétricos de geometría paramétrica (9), un tramo parabólico (8) situado centralmente entre los tramos paramétricos, estando el tramo parabólico situado más cercano al tubo absorbedor (6) que los tramos simétricos de geometría paramétrica (9);

- el reconcentrador secundario optimizado (5) funciona también como tubo receptor y comprende un tubo absorbedor interior (6) con recubrimiento absorbente selectivo y un tubo de vidrio exterior (6') parcialmente espejado (10), con la parte espejada situándose o en la parte exterior o en la parte interior del tubo de vidrio;

- el cuerpo central de la estructura (7) del colector queda encajado en la discontinuidad que se forma entre los tramos simétricos del reflector primario (9), quedando el centro de gravedad del colector muy próximo al eje de giro del propio colector.

2. Colector solar cilindro paramétrico con reconcentrador secundario optimizado según reivindicación 1, caracterizado porque el tramo parabólico (8) se divide en varias secciones independientes.

3. Colector solar cilindro paramétrico con reconcentrador secundario optimizado según reivindicación 1, caracterizado porque la parte no espejada del tubo de vidrio (6') tiene un recubrimiento antirreflectante que optimice la absorción de la luz solar.

4. Colector solar cilindro paramétrico con reconcentrador secundario optimizado según reivindicación 1, caracterizado porque el tubo absorbedor interior (6) y el tubo de vidrio exterior (6') no son coaxiales.

5. Colector solar cilindro paramétrico con reconcentrador secundario optimizado según reivindicación 1, caracterizado porque el tubo absorbedor interior (6) y el tubo de vidrio exterior (6') son de geometría no circular.

6. Procedimiento de diseño de un colector solar cilindro paramétrico como el descrito en las reivindicaciones anteriores que comprende las siguientes etapas:

- Siendo φ el semiángulo de aceptancia de la radiación incidente en el reflector primario (1), en primer lugar se traza la curva lugar geométrico de los puntos desde los cuales es posible emitir luz confinada en un ángulo de apertura θ igual a 2φ de tal forma que los rayos extremos del mencionado haz de luz (4) resulten tangentes al tubo absorbedor (6), uno de ellos sin reflexión alguna sobre el reconcentrador secundario (5) y el otro tras una única reflexión sobre el referido reconcentrador (5); el punto extremo (11) de esta curva, la geometría completa del reconcentrador secundario (5) espejado (10) y la posición relativa entre el tubo absorbedor (6) y el tubo de vidrio (6'), se obtienen imponiendo la condición de simetría y obligando a que, para el punto en cuestión (11), todos los rayos (4) intermedios situados entre los referidos rayos extremos alcancen el tubo absorbedor (6) tras una o ninguna reflexiones en el reconcentrador secundario (5).

- En segundo lugar se traza la curva que, pasando por el punto (11) asegura que los rayos incidentes perpendiculares al frente de ondas inclinado un ángulo φ respecto a la horizontal en el sentido de las agujas del reloj, son reflejados tangentes al tubo absorbedor (6); las dos curvas anteriores intersectan en los puntos (11) y (11) y definen los límites de la curva del tramo paramétrico derecho (9) del reflector primario; el tramo paramétrico izquierdo del reflector primario es el simétrico del anterior.

- El segundo tramo de la geometría del reflector primario es un tramo parabólico (8); los dos puntos extremos (12) del tramo parabólico (8) reúnen tres condiciones: son simétricos, ven al tubo (6) con una aceptancia igual o superior a la de diseño y no bloquean el haz de luz reflejado por el punto (11') y por su simétrico; en estos dos puntos (12) se manifiestan sendas discontinuidades en la geometría del primario.


 

Patentes similares o relacionadas:

Captador solar, del 31 de Mayo de 2017, de Solfast Pty Ltd: Un captador solar, que comprende: un medio de regulación de calor, que define una cavidad en el mismo y que tiene una abertura que comunica con la cavidad, […]

MÉTODO DE CALIBRACIÓN PARA HELIOSTATOS, del 6 de Abril de 2017, de FUNDACION CENER-CIEMAT: Método de calibración para heliostatos que comprende llevar a cabo al menos una búsqueda para visualizar al menos una referencia por medio de un dispositivo de visión […]

Panel para colectores solares térmicos, del 5 de Abril de 2017, de ALUCOIL, S.A.: De especial aplicación a colectores cilindro-parabólicos provistos de reflectores especulares que concentran la radiación solar sobre un tubo […]

Método de calibración para heliostatos, del 3 de Abril de 2017, de FUNDACION CENER-CIEMAT: Método de calibración para heliostatos que comprende llevar a cabo al menos una búsqueda para visualizar al menos una referencia por medio de un dispositivo […]

Sistema receptor para una instalación solar de Fresnel, del 1 de Marzo de 2017, de Rioglass Solar Holding, S.A: Sistema receptor para una instalación solar de Fresnel con un tubo de absorbedor que define […]

Espejo de Fresnel, del 22 de Febrero de 2017, de Erbslöh Aluminium GmbH: Espejo de Fresnel formado por una pieza de soporte plana , que tiene una estructura de Fresnel en su cara superior, estando los escalones […]

DISPOSITIVO PARA CONCENTRAR RADIACIÓN SOLAR PARABÓLICO Y MÉTODOS PARA DETERMINAR LA MAQUETA DIGITAL Y PARA CONSTRUIR EL DISPOSITIVO, del 2 de Febrero de 2017, de JARA VARGAS, Hugo: Dispositivo para concentrar radiación solar parabólico que permite optimizar la distribución de la radiación solar por unidad de área reduciendo el número […]

MÉTODO Y SISTEMA PARA LA CALIBRACIÓN DE UNA PLURALIDAD DE HELIOSTATOS EN UNA PLANTA TERMO SOLAR DE CONCENTRACIÓN, del 2 de Enero de 2017, de BCB INFORMATICA Y CONTROL SL: Sistema y método para la calibración de una pluralidad de heliostatos en una planta termosolar de concentración que comprende una pluralidad de heliostatos móviles en azimut […]

Utilizamos cookies para mejorar nuestros servicios y mostrarle publicidad relevante. Si continua navegando, consideramos que acepta su uso. Puede obtener más información aquí. .