Catalizador a base de cobalto sobre soporte.

Catalizador a base de cobalto sobre soporte caracterizado porque el portador presenta un diámetro de partícula medio,

medido mediante Coulter LS230, comprendido entre 120 y 180 µm, una zona superficial comprendida entre 185 m2/g y 210 m2/g, y un volumen de poro superior a 0, 35 cm3/g, medido por el método B.E.T., estando constituida principalmente la fase activa por >80% de cobalto.

Tipo: Patente Europea. Resumen de patente/invención. Número de Solicitud: E01200639.

Solicitante: ENI S.P.A..

Nacionalidad solicitante: Italia.

Dirección: PIAZZALE E. MATTEI, 1 00144 ROME ITALIA.

Inventor/es: BELLUSSI, GIUSEPPE, ZENNARO, ROBERTO, PICCOLO, VINCENZO, RADAELLI, ENRICO, ROY-AUBERGER, MAGALIE.

Fecha de Publicación: .

Clasificación Internacional de Patentes:

  • B01J21/04 TECNICAS INDUSTRIALES DIVERSAS; TRANSPORTES.B01 PROCEDIMIENTOS O APARATOS FISICOS O QUIMICOS EN GENERAL.B01J PROCEDIMIENTOS QUÍMICOS O FÍSICOS, p. ej. CATÁLISIS O QUÍMICA DE LOS COLOIDES; APARATOS ADECUADOS. › B01J 21/00 Catalizadores que contienen los elementos, los óxidos o los hidróxidos de magnesio, de boro, de aluminio, de carbono, de silicio, de titanio, de zirconio o de hafnio. › Alúmina.
  • B01J23/74 B01J […] › B01J 23/00 Catalizadores que contienen metales, óxidos o hidróxidos metálicos no previstos en el grupo B01J 21/00 (B01J 21/16 tiene prioridad). › Metales del grupo del hierro.
  • B01J23/75 B01J 23/00 […] › Cobalto.
  • B01J31/16 B01J […] › B01J 31/00 Catalizadores que contienen hidruros, complejos de coordinación o compuestos orgánicos (composiciones catalíticas utilizadas únicamente para reacciones de polimerización C08). › que contienen complejos de coordinación.
  • B01J35/02 B01J […] › B01J 35/00 Catalizadores en general, caracterizados por su forma o propiedades físicas. › sólidos.
  • B01J35/10 B01J 35/00 […] › caracterizados por sus propiedades de superficie o su porosidad.
  • C07C1/04 QUIMICA; METALURGIA.C07 QUIMICA ORGANICA.C07C COMPUESTOS ACICLICOS O CARBOCICLICOS (compuestos macromoleculares C08; producción de compuestos orgánicos por electrolisiso electroforesis C25B 3/00, C25B 7/00). › C07C 1/00 Preparación de hidrocarburos a partir de uno o varios compuestos, cuando alguno de ellos no es un hidrocarburo. › a partir de monóxido de carbono con hidrógeno.
  • C10G2/00 C […] › C10 INDUSTRIAS DEL PETROLEO, GAS O COQUE; GAS DE SINTESIS QUE CONTIENE MONOXIDO DE CARBONO; COMBUSTIBLES; LUBRICANTES; TURBA.C10G CRACKING DE LOS ACEITES DE HIDROCARBUROS; PRODUCCION DE MEZCLAS DE HIDROCARBUROS LIQUIDOS, p. ej. POR HIDROGENACION DESTRUCTIVA, POR OLIGOMERIZACION, POR POLIMERIZACION (cracking para la producción de hidrógeno o de gas de síntesis C01B; cracking que produce hidrocarburos gaseosos que producen a su vez, hidrocarburos individuales o sus mezclas de composición definida o especificada C07C; cracking que produce coque C10B ); RECUPERACION DE ACEITES DE HIDROCARBUROS A PARTIR DE ESQUISTOS, DE ARENA PETROLIFERA O GASES; REFINO DE MEZCLAS COMPUESTAS PRINCIPALMENTE DE HIDROCARBUROS; REFORMADO DE NAFTA; CERAS MINERALES. › Producción de mezclas líquidas de hidrocarburos de composición no definida a partir de óxidos de carbono.
Catalizador a base de cobalto sobre soporte.

Fragmento de la descripción:

Catalizador a base de cobalto sobre soporte.

La presente invención se refiere a un catalizador a base de cobalto sobre soporte, que puede utilizarse en la reacción de Fischer-Tropsch en un reactor gas-líquido-sólido fluidizado.

La actividad de los catalizadores Fischer-Tropsch puede estar influida por todos los factores físicos que afectan la velocidad de la transferencia de masa de los reactivos y productos, entre las diversas fases y la transferencia de calor. Como resultado, puede observarse que en condiciones de régimen de difusión, existe no solamente una velocidad de reacción menor sino también un cambio en la selectividad de los diversos productos, que comprometen el rendimiento del proceso global tanto desde un punto de vista cuantitativo como cualitativo.

En una reacción catalítica, los procesos de transferencia de materia del material y de calor entre el fluido y el catalizador dependen del régimen fluidodinámico al que están sometidos los reactivos y los productos de reacción y de la geometría del reactor, es decir del tipo de solución de reactor adoptado.

En la síntesis Fischer-Tropsch pueden utilizarse reactores de lecho fijo, reactores de arrastre, reactores de lecho fluidizado, tal como se describe en la patente US n° 4.670.472 (Dyer et al.). Más recientemente se preparan sistemas fluidizados gas-líquido-sólido (columna de burbujas en suspensión) para otras soluciones de reactores. Los caudales de los fluidos en estas soluciones deben ser tales que garanticen una suspensión más o menos homogénea del catalizador en el volumen de reacción completo y que faciliten la eliminación del calor producido por la reacción exotérmica, mejorando el intercambio de calor entre la zona de reacción y un intercambiador adecuado introducido en la columna. En cuanto al catalizador se refiere, las partículas sólidas deben tener dimensiones suficientemente grandes como para que se separen fácilmente de los productos líquidos, pero suficientemente pequeñas como para que minimicen las limitaciones de la difusión en el interior de las partículas.

Las limitaciones a los procesos de transporte (de materia y/o calor) pueden subdividirse en régimen de difusión externo (o interpartículas) y régimen de difusión interno (o intrapartículas). La entidad del fenómeno ligado a la difusión externa depende de la fluidodinámica y de la geometría del sistema, es decir, de la cantidad y de las características del fluido reactivo y de la zona superficial de la interfase (forma y dimensiones de las partículas de catalizador). Los fenómenos de difusión interna, por otra parte, dependen de la estructura química y morfológica del catalizador (dimensiones del poro, zona superficial, densidad de las zonas activas) y de las dimensiones moleculares de la especie en cuestión.

Los reactores multifase de tipo suspensión utilizan generalmente partículas pequeñas de catalizador (20 a 150 pm) que no dan problemas de difusión interna pero pueden someterse a limitaciones de transferencia de masa externa debido a la baja difusión de los gases en el líquido hidrocarbonado y velocidad de fluido relativamente baja. Por el contrario, la conductividad térmica relativamente alta del líquido permite que se ignoren las limitaciones de transferencia de calor externo (J. M. Smith, "Chemical Engineering Kinetics", McGraw Hill Int. D., 1988, cap. 10, pág. 415).

Los fenómenos de transporte interno, por otra parte, están ligados a los parámetros morfológicos del material poroso utilizado como soporte de la fase activa, que determinan la capacidad de difusión en el interior de la partícula de catalizador. El efecto de las limitaciones de transporte intra-partícula sirve para generar un gradiente de concentración negativo de los reactivos en el interior de la partícula de catalizador que, como efecto final, produce un descenso en la velocidad de reacción.

Del mismo modo es posible observar gradientes de temperatura que, debido a una reacción exotérmica, tal como la síntesis de Fischer-Tropsch, crean un aumento de temperatura hacia el centro de la partícula de catalizador que aumenta su velocidad de reacción, por lo tanto, con un efecto contrario a la transferencia de masa, favoreciendo la selectividad a los hidrocarburos ligeros. Asimismo en el caso de las reacciones con una disminución en el número de moles, se producen gradientes de presión totales, capaces de crear corrientes de reactivo hacia el centro de la partícula. Mientras que por una parte, este fenómeno aumenta la difusión de los reactivos hacia el interior del catalizador, por otra parte retarda la difusión de los productos de reacción hacia el exterior.

En una reacción multifase tal como la síntesis de Fischer-Tropsch, los procesos de transporte de los reactivos y los productos están condicionados por la presencia del líquido hidrocarbonado producido. Más específicamente, las diferentes difusividades de los reactivos (CO, H2) en el líquido hidrocarbonado, un factor de aproximadamente 103 a 104 inferior con respecto a las difusividades en el gas, crean concentraciones bajas de CO hacia el centro de la partícula con un aumento progresivo consiguiente en la relación H2/CO en el interior del catalizador. Esta condición favorece la formación de hidrocarburos ligeros y de reacciones secundarias en los productos principales. A partir de los estudios presentados en la bibliografía en este campo, puede observarse cómo, para los catalizadores a base de cobalto sobre diferentes soportes utilizados en la síntesis de Fischer-Tropsch, es posible omitir las limitaciones de difusión internas operando con partículas con un diámetro inferior a 200 pm) (Iglesia, et al., Computer-aided Design of Catalysts, ED. Becker-Pereira, 1993, cap. 7).

En términos más generales, para cualquier reacción catalítica, los fenómenos de transporte interno se vuelven menos importantes con la disminución de la dimensión de las partículas del catalizador. Por ejemplo, para aplicaciones en lecho fluidizado o en suspensión, las limitaciones de transporte de calor intra-partícula son generalmente insignificantes (J. M. Smith, "Chemical Engineering Kinetics", McGraw Hill Int. D., 1988, cap. 11, pág. 451).

El caso ideal en el que puede existir una ausencia total de limitaciones de transporte de masa y de calor se representa mediante catalizadores homogéneos. Estos sistemas homogéneos sin embargo no son aplicables en muchos procesos, debido a las dificultades y costes en relación con la separación del catalizador del medio de reacción. Estos costes, de hecho, son con frecuencia mayores que los beneficios que se derivan de la ausencia de las limitaciones de difusión.

Las dimensiones de la partícula de catalizador son por consiguiente de importancia fundamental y deben ser suficientemente pequeñas a fin de evitar las limitaciones al transporte de masa y calor debido a limitaciones de difusión interna y al mismo tiempo suficientemente grandes como para ser fácilmente separables del líquido en suspensión.

La utilización de un reactor en columna de burbujas en suspensión (SBCR) en un sistema multifase gas-líquido-sólido en la síntesis de Fischer-Tropsch está entre las soluciones de reactor preferidas. Más específicamente, en un SBSR, el catalizador se pone en suspensión en un líquido hidrocarbonado, con frecuencia el propio producto de reacción. El gas de síntesis, constituido por CO, H2, N2, CO2, se alimenta por medio de un distribuidor adecuado capaz de generar burbujas de gas dispersadas en el interior de la suspensión. Las burbujas de gas migran hacia arriba hacia la suspensión, estando sometidas a fenómenos de coalescencia y de fractura. De este modo, se crea una amplia distribución de los diámetros de burbuja (3 a 80 mm), lo que determina la mezcla y distribución del catalizador dentro de la columna de burbujas. La eficacia del mezclado, y por consiguiente del grado de dispersión del sólido en el líquido, está ligada principalmente a la suspensión de las burbujas de gas grandes (20 a 80 mm) con una velocidad de aproximadamente 1 a 2 m/s.

Los productos gaseosos se envían hacia la parte superior del reactor y a continuación se procesan externamente, mientras que los productos líquidos se recuperan por filtración del catalizador.

El documento US-A-5.639.798 da a conocer catalizadores que comprenden cobalto sobre soporte en un óxido inorgánico (preferentemente alúmina) activo para la síntesis de Fischer-Tropsch, mientras que el documento US-A- 4.413.064 da a conocer un procedimiento de Fischer-Tropsch que utiliza catalizadores de cobalto sobre soporte de alúmina.

A pesar de las ventajas reconocidas en la utilización de un SBCR en la reacción de Fischer-Tropsch (véanse referencias presentes...

 


Reivindicaciones:

1. Catalizador a base de cobalto sobre soporte caracterizado por que el soporte presenta un diámetro de partícula medio, medido mediante Coulter LS230, comprendido entre 120 y 180 pm, una zona superficial comprendida entre

185 y 210 m2/g, y un volumen de poro superior a 0,35 cm3/g, medido por el método B.E.T., estando constituida

principalmente la fase activa por >80% de cobalto, y por que el soporte está constituido por al menos 80% de óxido de aluminio.

2. Catalizador según la reivindicación 1, caracterizado por que el soporte presenta un volumen de poro superior a

0,40 cm3/g.

3. Procedimiento Fischer-Tropsch en un reactor fluidizado gas-líquido-sólido que comprende la reacción de CO y H2, opcionalmente diluidos con CO2 y/o N2, para proporcionar predominantemente hidrocarburos C5+, caracterizado por que se realiza en presencia del catalizador según cualquiera de las reivindicaciones anteriores.

4. Procedimiento Fischer-Tropsch según la reivindicación 3, caracterizado por que se realiza en un reactor en columna de burbujas en suspensión (SBCR).


 

Patentes similares o relacionadas:

Óxidos mixtos de metales de transición, catalizadores de hidrotratamiento obtenidos de los mismos y procedimiento de preparación que comprende procedimientos sol-gel, del 15 de Julio de 2020, de ENI S.P.A.: Óxido mixto, que presenta la fórmula general (A2): Xa Yb Zc Od . pC (A2) en la que X se selecciona de Ni, Co y mezclas de los mismos, […]

Catalizadores de hidrodesmetalización y de hidrodesulfuración e implementación en un procedimiento de unión de formulación única, del 24 de Junio de 2020, de IFP ENERGIES NOUVELLES: Sistema catalítico que comprende al menos dos catalizadores en los que - el primer catalizador comprende - un contenido de metal o […]

Imagen de 'Estructura de catalizador de dióxido de titanio para procesos…'Estructura de catalizador de dióxido de titanio para procesos hasta 1.000ºc y fabricación de dicha estructura, del 24 de Junio de 2020, de Advanced Materials- JTJ S.r.o: Una estructura de catalizador de TiO2 para los procedimientos catalíticos realizados a temperaturas de hasta 800° C, presentada en forma de polvo consistente en nano-partículas […]

Material catalizador y procedimiento para su producción, del 17 de Junio de 2020, de SACHTLEBEN CHEMIE GMBH: Material catalizador a base de TiO2 en forma de partícula con un contenido de óxido de metal, seleccionado de óxido de vanadio y óxido de wolframio, y/o precursores de los […]

Uso de un material de partículas compuestas soportadas, procedimiento de producción de dicho material y procedimiento para producir compuestos usando material de partículas compuestas soportadas como catalizador para síntesis química, del 10 de Junio de 2020, de ASAHI KASEI KABUSHIKI KAISHA: Uso de un material de partículas compuestas soportadas que comprende: una partícula compuesta formada de un níquel oxidado y X, en el que X representa al menos uno de […]

Catalizador para un procedimiento de desparafinado por hidrogenación y método para fabricar el mismo, del 27 de Mayo de 2020, de SK INNOVATION CO., LTD: Método de fabricación de un catalizador para un procedimiento de hidrodesparafinado, que comprende las etapas de: (a) preparar un soporte […]

Procedimiento para la preparación de orto-fenilfenol (OPP), del 13 de Mayo de 2020, de LANXESS DEUTSCHLAND GMBH: Procedimiento para la preparación de orto-fenilfenol (OPP) mediante deshidrogenación catalítica de al menos un compuesto del componente A, que […]

Catalizador de reformado con vapor y procedimiento para fabricar el mismo, del 6 de Mayo de 2020, de HALDOR TOPS E A/S: Un procedimiento para la producción de un precursor de catalizador de níquel soportado, comprendiendo dicho procedimiento las etapas siguientes: i) proporcionar […]

Utilizamos cookies para mejorar nuestros servicios y mostrarle publicidad relevante. Si continua navegando, consideramos que acepta su uso. Puede obtener más información aquí. .