Inventos patentados en España.

Inventos patentados en España.

Inventos patentados en España en los últimos 80 años. Clasificación Internacional de Patentes CIP 2013.

PROCEDIMIENTO PARA FABRICAR UN APARATO DENTAL.

Patente Europea. Resumen:

Procedimiento para fabricar un aparato dental (100), comprendiendo dicho procedimiento: proporcionar un conjunto de datos digitales que representan una disposición de dientes modificada para un paciente; controlar una máquina de fabricación

(322) en base a los conjuntos de datos digitales para producir un modelo positivo de la disposición de dientes modificada; y producir el aparato dental (100) como un negativo del modelo positivo.

Solicitante: ALIGN TECHNOLOGY, INC..

Nacionalidad solicitante: Estados Unidos de América.

Dirección: 2560 ORCHARD PARKWAY SAN JOSE, CA 95131 ESTADOS UNIDOS DE AMERICA.

Inventor/es: CHISHTI, MUHAMMAD, LERIOS, APOSTOLOS, FREYBURGER, BRIAN, WIRTH, KELSEY, RIDGLEY, RICHARD.

Fecha de Publicación de la Concesión: 2 de Noviembre de 2011.

Fecha Solicitud PCT: 19 de Junio de 1998.

Clasificación Internacional de Patentes: A61C7/00 (Ortodoncia, es decir obtención o mantenimiento de la posición deseada de los dientes, p. ej. para enderezamiento, nivelación, ajuste, separación, o por corrección de maloclusiones.), A61C7/08 (.Aparatos de contención del tipo que se adaptan exactamente a la forma de la boca [5]).

Clasificación PCT: A61C7/00 (Ortodoncia, es decir obtención o mantenimiento de la posición deseada de los dientes, p. ej. para enderezamiento, nivelación, ajuste, separación, o por corrección de maloclusiones.).

Países PCT: Austria, Bélgica, Suiza, Alemania, Dinamarca, España, Francia, Reino Unido, Grecia, Italia, Liechtensein, Luxemburgo, Países Bajos, Suecia, Mónaco, Portugal, Irlanda, Finlandia, Chipre.

Volver al resumen de la patente.

Descripción:

La presente invención se refiere en general al campo de la ortodoncia. Más concretamente, la presente invención se refiere a un procedimiento para fabricar un aparato dental. La recolocación los dientes por motivos estéticos u otros se realiza convencionalmente utilizando lo que comúnmente se denominan aparatos. Los aparatos comprenden una variedad de aparatos tales como braquets, arcos de alambre, ligaduras, y juntas tóricas. La unión de los aparatos a los dientes de un paciente es una labor tediosa y que lleva tiempo, la cual requiere numerosas visitas al ortodoncista. En consecuencia, el tratamiento ortodóncico convencional limita la capacidad del paciente del ortodoncista y hace que el tratamiento ortodóncico resulte muy costoso. Antes de sujetar los aparatos a los dientes del paciente, típicamente se programa por lo menos una cita con el ortodoncista, dentista, y/o laboratorio de rayos-X para poder tomar radiografías y fotografías de los dientes del paciente y la estructura de la mandíbula. También, durante esta visita preliminar, o posiblemente en una visita posterior, típicamente se realiza un molde de alginato de los dientes del paciente. Este molde proporciona un modelo de los dientes del paciente que utiliza el ortodoncista conjuntamente con las radiografías y las fotografías para formular una estrategia de tratamiento. El ortodoncista típicamente programa entonces una o más citas durante las cuales se fijarán los aparatos a los dientes del paciente. En la visita durante la cual se fijan primero los aparatos, las superficies de los dientes se tratan inicialmente con un ácido débil. El ácido optimiza las propiedades de adhesión de las superficies de los dientes para braquets y bandas han de unirse a los mismos. Los braquets y las bandas sirven de anclaje para otros aparatos que se añadirán más tarde. Después de la etapa de tratamiento con ácido, los braquets y las bandas se cementan en los dientes del paciente utilizando un material de unión adecuado. Hasta que el cemento no ha endurecido no se añade ningún aparato que produzca fuerza. Por este motivo, es común que el ortodoncista programe una cita posterior para asegurar que los braquets y las bandas han quedado bien unidos a los dientes. El principal aparato que produce una fuerza en un conjunto convencional de aparatos es el arco de alambre. El arco de alambre es elástico y se une a los braquets a través de unas ranuras en los braquets. El arco de alambre une los braquets entre sí y ejerce fuerzas sobre ellos para mover los dientes con el tiempo. Comúnmente se utilizan alambres trenzados o juntas tóricas de elastómero para reforzar la unión del arco de alambre a los braquets. La unión del arco de alambre a los braquets se conoce en la técnica de la ortodoncia como ligación y los alambres utilizados en este procedimiento se denominan ligaduras. Las juntas tóricas de elastómero se denominan plásticos. Después de colocar el arco de alambre se requieren unas visitas periódicas con el ortodoncista, durante las cuales los aparatos del paciente se ajustarán instalando un arco de alambre diferente que tiene diferentes propiedades de generación de fuerza o sustituyendo o apretando las ligaduras existentes. Típicamente, estas visitas se programan cada tres a seis semanas. Tal como ilustra lo anterior, el uso de aparatos convencionales es un procedimiento tedioso y que lleva tiempo y requiere numerosas visitas a la consulta del ortodoncista. Por otra parte, desde la perspectiva del paciente, el uso de aparatos resulta antiestético, incómodo, presenta riesgo de infección, y hace que el cepillado, la aplicación de hilo dental, y otros procedimientos de higiene dental resulten difíciles. Por estos motivos, sería deseable disponer de procedimientos y sistemas alternativos para recolocar los dientes. Dichos procedimientos y sistemas deben ser económicos y, en particular, deben reducir el tiempo que el ortodoncista necesita para la planificación y la supervisión de cada paciente individual. Los procedimientos y sistemas también deben ser más aceptables para el paciente, en particular que sean menos visibles, menos incómodos, menos propensos a infección y más compatibles con la higiene dental diaria. 2. Descripción de la técnica anterior ES 2 367 282 T3 Kesling en el Am. J. Orthod. Oral. Surg. 31:297 - 304 (1945) y 32:285 - 293 (1946) describe posicionadores de dientes para terminar un tratamiento ortodóncico. En Warunek y otros (1989) J. Clin. Orthod. 23:694 700 se describe el uso de posicionadores de silicona para una realineación ortodóncica completa de los dientes de un paciente. Raintree Essix, Inc., New Orleans, Luisiana 70125, y Tru-Tain Plastics, Rochester, Minnesota 55902 tienen disponibles en el mercado retenes de plástico transparente para el acabado y el mantenimiento de las posiciones de los dientes. En las patentes americanas nº 5.186.623; 5.059.118; 5.055.039; 5.035.613; 4.856.991; 4.798.534; y 4.755.139 se describe la fabricación de posicionadores ortodóncicos. Otras publicaciones que describen la fabricación y el uso de posicionadores dentales incluyen Kleemann y Janssen (1996) J. Clin. Orthodon. 30:673 - 680; Cureton (1996) J. Clin. Orthodon. 30:390 - 395; Chiappone (1980) J. Clin. 2 Orthodon. 14:121 - 133; Shilliday (1971). Am J. Orthodontics 59:596 - 599; Wells (1970). Am J. Orthodontics 58:351 - 366; y Cottingham (1969). Am J. Orthodontics 55:23 - 31. Kuroda y otros. (1996) Am J. Orthodontics 110:365 - 369 describe un procedimiento para escanear con láser un molde dental de yeso para producir una imagen digital del molde. Véase también la patente americana nº 5.605.459. Las patente americanas nº 5.533.895; 5.474.448; 5.454.717; 5.447.432; 5.431.562; 5.395.238; 5.368.478; y 5.139.419, cedidas a Ormco Corporation, describen procedimientos para manipular imágenes digitales de dientes para diseñar aparatos ortodóncicos. La patente americana nº 5.011.405 describe un procedimiento para la representación digital de un diente y la determinación de la colocación óptima del braquet para el tratamiento ortodóncico. En la patente americana nº 5.338.198 se describe el escaneado por láser de un diente moldeado para producir un modelo tridimensional. La patente americana nº 5.452.219 describe un procedimiento de escaneado por láser de un modelo de un diente y el fresado de un molde de un diente. En las patentes americanas nº 5.607.305 y 5.587.912 se describe la manipulación digital por ordenador de contornos de dientes. En las patentes americanas nº 5.342.202 y 5.340.309 se describe la representación digital computerizada de la mandíbula. Otras patentes de interés incluyen las patentes americanas nº 5.549.476; 5.382.164; 5.273.429; 4.936.862; 3.860.803; 3.660.900; 5.645.421; 5.055.039; 4.798.534; 4.856.991; 5.035.613; 5.059.118; 5.186.623; y 4.755.139. El documento US 4.505.673 describe un dispositivo de tratamiento ortodóncico y un procedimiento para fabricar el mismo. El documento WO 94/10935 describe un procedimiento y un aparato para formar un aparato ortodóncico a medida. DESCRIPCIÓN DE LA INVENCIÓN ES 2 367 282 T3 La presente invención dispone un procedimiento para fabricar un aparato dental de acuerdo con la reivindicación 1. La recolocación se consigue con un sistema que comprende una serie de aparatos configurados para recibir los dientes en una cavidad y recolocar incrementalmente dientes individuales en una serie de por lo de tres etapas sucesivas, incluyendo normalmente por lo menos cuatro etapas sucesivas, incluyendo a menudo por lo menos diez etapas, incluyendo a veces por lo menos veinticinco etapas, e incluyendo ocasionalmente cuarenta etapas o más. Más a menudo, los procedimientos y sistemas recolocarán dientes en diez a veinticinco etapas sucesivas, aunque casos complejos en los que haya implicados muchos de los dientes del paciente pueden tener cuarenta etapas o más. El uso sucesivo de una serie de dichos aparatos permite configurar cada aparato para mover dientes individuales en pequeños incrementos, típicamente menos de 2 mm, preferiblemente menos de 1 mm, y preferiblemente menos de 0,5 mm. Estos límites se refieren a la traslación lineal máxima de cualquier punto en un diente como resultado de utilizar un único aparato. Es evidente que los movimientos de aparatos sucesivos normalmente no serán los mismos para cualquier diente particular. De este modo, un punto de un diente puede moverse una distancia particular como resultado del uso de un aparato y después moverse una distancia distinta y/o en una dirección diferente por un aparato posterior. Los aparatos individuales comprenden preferiblemente una estructura de polímero que presenta una cavidad para la recepción de los dientes formada en la misma, típicamente por moldeo, tal como se describe a continuación. Cada aparato individual se configurará de manera que su cavidad para la recepción de los dientes presente una geometría correspondiente a una disposición de dientes intermedia o extrema prevista para ese aparato. Es decir, cuando el paciente lleva por primera vez el aparato, algunos de los dientes quedarán desalineados respecto a una geometría no deformada de la cavidad del aparato. El aparato, sin embargo, es lo suficientemente elástico para recibir o adaptarse a los dientes desalineados, y aplicará una fuerza elástica suficiente contra dichos dientes desalineados para recolocar los dientes a la disposición intermedia o extrema deseada para esa etapa de tratamiento. Los sistemas descritos para una mejor comprensión de la presente invención incluirán por lo menos un primer aparato que tiene una geometría seleccionada para recolocar los dientes de un paciente de la disposición inicial de los dientes a una primera disposición intermedia en la que dientes individuales se recolocarán incrementalmente. El sistema comprenderá además por lo menos un aparato intermedio que tiene una geometría selectiva para recolocar progresivamente los dientes de la primera disposición intermedia a una o más disposiciones intermedias sucesivas. Todavía, el sistema comprenderá además un aparato final que tiene una geometría seleccionada para recolocar progresivamente los dientes desde la última disposición intermedia a la disposición final deseada del diente. En algunos casos, será deseable formar el aparato o varios aparatos para sobrecorregir la posición final del diente, tal como se describirá a continuación con mayor detalle. Tal como se describirá con mayor detalle a continuación en relación con los procedimientos descritos para una mejor comprensión de la presente invención y los procedimientos de la presente invención, los sistemas pueden planearse y todos los aparatos individuales pueden fabricarse al principio del tratamiento, y de este modo al paciente se le pueden suministrar los aparatos como un único paquete o sistema. El orden en el cual se han de utilizar los aparatos se marcará claramente, (por ejemplo, mediante enumeración secuencial) para que el paciente pueda colocar los aparatos en sus dientes a una frecuencia prescrita por el ortodoncista u otro profesional que le trate. A diferencia de otros aparatos, no es necesario que el paciente visite al profesional que le trata cada vez que se realiza un ajuste en el tratamiento. Aunque 3 ES 2 367 282 T3 que los pacientes normalmente desearán visitar periódicamente a los profesionales que les tratan para asegurar que el tratamiento va según el programa original, la eliminación de la necesidad de visitar al profesional que le trata cada vez que debe realizarse un ajuste permite llevar a cabo el tratamiento en muchas más etapas sucesivas, pero más pequeñas, a la vez que todavía se reducirá el tiempo dedicado por el profesional con el paciente individual. Por otra parte, la capacidad de utilizar aparatos de estructura de polímero que son más cómodos, menos visibles, y desmontables por el paciente mejora mucho la aceptabilidad, la comodidad, y la satisfacción del paciente. De acuerdo con un procedimiento descrito para una mejor comprensión de la presente invención, los dientes de un paciente se recolocan de una disposición inicial de los dientes a una disposición final de los dientes colocando una serie de aparatos de ajuste incremental de la posición en la boca del paciente. Convenientemente, los aparatos no se adhieren y el paciente puede colocarse y sustituir los aparatos en cualquier momento durante el procedimiento. El primer aparato de la serie presentará una geometría seleccionada para recolocar los dientes de la disposición inicial de los dientes a una primera disposición intermedia. Tras aproximarse o conseguir la primera disposición intermedia, uno o más aparatos adicionales (intermedios) se colocarán sucesivamente en los dientes, donde dichos aparatos adicionales presentan geometrías seleccionadas para recolocar progresivamente los dientes de la primera disposición intermedia a través de una(s) disposición(es) intermedia(s) sucesiva(s). El tratamiento finalizará colocando un aparato final en la boca del paciente, donde el aparato final presenta una geometría seleccionada para recolocar progresivamente los dientes de la última disposición intermedia a la disposición final de los dientes. El aparato final o varios aparatos en la serie pueden presentar una geometría o unas geometrías seleccionadas para sobrecorregir la disposición del diente, es decir, pueden presentar una geometría que (si se consigue completamente) mueva los dientes individuales más allá de la disposición del diente que se ha seleccionado como final. Dicha sobrecorrección puede ser deseable para compensar una potencial recaída después de que haya finalizado el procedimiento de recolocación, es decir, para permitir un cierto movimiento de los dientes individuales hacia sus posiciones previamente corregidas. La sobrecorrección también puede resultar beneficiosa para acelerar la corrección, es decir, teniendo un aparato con una geometría que se sitúe más allá de una posición intermedia o final deseada, los dientes individuales se desplazarán hacia la posición a una mayor velocidad. En tales casos, el tratamiento puede finalizar antes de que los dientes alcancen las posiciones definidas por el aparato o aparatos finales. El procedimiento comprenderá normalmente colocar por lo menos dos aparatos adicionales, que a menudo comprende colocar por lo menos diez aparatos adicionales, a veces colocar por lo menos veinticinco aparatos adicionales, y de vez en cuando colocar por lo menos cuarenta aparatos adicionales o más. Los aparatos sucesivos se sustituirán cuando los dientes se aproximen (dentro de una tolerancia preseleccionada) o bien hayan alcanzado la disposición extrema de destino para esa etapa de tratamiento, sustituyéndose típicamente en un intervalo que oscila entre 2 días y 20 días, normalmente en un intervalo que oscila entre 5 días y 10 días. A menudo puede ser deseable sustituir los aparatos a la vez antes de obtener realmente la disposición extrema de los dientes de esa etapa de tratamiento. Se apreciará que como los dientes se recolocan gradualmente y se aproximan a la geometría definida por un aparato particular, la fuerza de recolocación sobre los dientes individuales disminuye mucho. De este modo, puede ser posible reducir el tiempo de tratamiento global sustituyendo un aparato anterior por el aparato sucesivo a la vez cuando los dientes sólo hayan sido recolocados parcialmente por el aparato anterior. De este modo, el FDDS puede representar realmente una sobrecorrección de la posición final de los dientes. Esto puede acelerar el tratamiento y puede compensar una recaída del paciente. En general, la transición al siguiente aparato puede basarse en una serie de factores. De manera más simple, los aparatos pueden sustituirse sobre una programación predeterminada o en un intervalo del tiempo fijo (es decir, un número de días para cada aparato) determinado al principio en base a una respuesta del paciente esperada o típica. Alternativamente, puede tenerse en cuenta la respuesta real del paciente, por ejemplo un paciente puede avanzar al siguiente aparato cuando ese paciente ya no perciba presión en sus dientes por parte del aparato actual, es decir, el aparato que ha estado llevando encaja fácilmente en los dientes del paciente y el paciente nota poca o ninguna presión o incomodidad en sus dientes. En algunos casos, para pacientes cuyos dientes responden de manera muy rápida, puede ser posible para un profesional decidir si se salta uno o más aparatos intermedios, es decir, reducir el número total de aparatos que se utilizan por debajo del número determinado al principio. De este modo puede reducirse el tiempo de tratamiento global para un paciente particular. En otro aspecto, los procedimientos descritos para una mejor compresión de la presente invención comprenden recolocar los dientes utilizando aparatos que comprenden estructuras de polímero que presentan unas cavidades conformadas para recibir y recolocar de manera elástica los dientes para producir una disposición final de los dientes. Los ejemplos útiles para una mejor compresión de la invención proporcionan mejoras a dichos procedimientos que comprenden determinar al principio del tratamiento unas geometrías para por lo menos tres de los aparatos que ha de llevar un paciente para recolocar los dientes a partir de una disposición inicial de los dientes a una disposición final de los dientes. Preferiblemente, al principio se determinarán por lo menos cuatro geometrías, a menudo por lo menos diez geometrías, con frecuencia por lo menos veinticinco geometrías, y a veces cuarenta geometrías o más. Normalmente, las posiciones de los dientes definidas por las cavidades en cada geometría sucesiva difieren de las definidas por la geometría anterior en no más de 2 mm, preferiblemente no más de 1 mm, y a menudo no más de 0,5 mm, tal como se ha definido anteriormente. Todavía en otro aspecto, se disponen procedimientos para producir un conjunto de datos digitales que representan una disposición final de los dientes. Los procedimientos comprenden proporcionar un conjunto de datos iniciales que 4 ES 2 367 282 T3 representan una disposición inicial de los dientes, y presentar una imagen visual basada en el conjunto de datos iniciales. La imagen visual se manipula entonces para recolocar los dientes individuales en la imagen visual. Entonces se produce un conjunto final de datos digitales que representa la disposición final de los diente con dientes recolocados según se observa en la imagen. Convenientemente, el conjunto inicial de datos digitales puede proporcionarse mediante técnicas convencionales, incluyendo digitalización de imágenes de rayos X, imágenes producidas por tomografía asistida por ordenador (exploraciones CAT), imágenes producidas por medio de formación de imágenes por resonancia magnética (MRI) y similares. Preferiblemente, las imágenes serán imágenes tridimensionales y la numeración puede conseguirse utilizando tecnología convencional. Normalmente, el conjunto inicial de datos digitales establecido se proporciona creando un molde de yeso de los dientes del paciente (antes del tratamiento) mediante técnicas convencionales. El molde de yeso así producido puede entonces ser escaneado utilizando láser u otro equipo de escaneo para producir una representación digital en alta resolución del molde de yeso de los dientes del paciente. El uso del molde de yeso se prefiere ya que no expone al paciente a radiografías ni somete al paciente a los inconvenientes de una exploración MRI. En una realización preferida, se obtiene también una cera de mordida del paciente utilizando procedimientos estándar. La cera de mordida permite colocar moldes de yeso de la dentición superior e inferior de un paciente unos respecto a los otros en la posición oclusiva central. Después se escanea el par de moldes para proporcionar información acerca de la posición relativa de la mandíbula en esta posición. Esta información se incorpora entonces en el IDDS para ambos arcos. Una vez que se ha adquirido el conjunto de datos digitales puede presentarse y manipularse una imagen en un sistema informático apropiado equipado con un software de diseño asistido por ordenador, tal como se describe en mayor detalle a continuación. La manipulación de imágenes normalmente comprenderá definir límites alrededor de por lo menos algunos de los dientes individuales, y hacer que las imágenes de los dientes se muevan respecto a la mandíbula y otros dientes por manipulación de la imagen a través del ordenador. Se disponen también unos procedimientos para detectar información de la cúspide para los dientes. La manipulación de imágenes puede realizarse de una manera totalmente subjetiva, es decir, el usuario puede recolocar simplemente los dientes de una manera estéticamente y/o terapéuticamente deseada en base a la observación de la imagen sola. Alternativamente, el sistema informático podría incorporar reglas y algoritmos que ayuden al usuario a recolocar los dientes. En algunos casos será posible proporcionar reglas y algoritmos que recoloquen los dientes de una manera completamente automática, es decir, sin la intervención del usuario. Una vez que se han recolocado los dientes individuales, se generará y se almacenará un conjunto final de datos digitales que representan la disposición final deseada de los dientes. Un procedimiento preferido para determinar la disposición final de los dientes es que el profesional defina las posiciones finales de los dientes, por ejemplo mediante una prescripción escrita. El uso de prescripciones para definir los resultados deseados de procedimientos ortodóncicos es conocido en la técnica. Cuando se proporciona una prescripción u otra designación final, la imagen puede manipularse entonces para que coincida con la receta. En algunos casos sería posible proporcionar un software que pudiera interpretar la prescripción con el fin de generar la imagen final y de este modo el conjunto de datos digitales que representaban la disposición final de los dientes. Todavía en otro aspecto, los procedimientos de acuerdo con una o más etapas de la presente invención se disponen para producir una pluralidad de conjuntos de datos digitales que representen una serie de disposiciones discretas de dientes que progresan desde una disposición inicial de los dientes a una disposición final de los dientes. Dichos procedimientos comprenden proporcionar un conjunto de datos digitales que representan una disposición inicial de los dientes (que puede conseguirse de acuerdo con cualquiera de las técnicas expuestas anteriormente). Se dispone también un conjunto de datos digitales que representan una disposición final de los dientes. Dicho conjunto final de datos digitales puede determinarse a través de los procedimientos descritos anteriormente. La pluralidad conjuntos de datos digitales sucesivos se produce entonces en base al conjunto inicial de datos digitales y el conjunto final de datos digitales. Normalmente, los conjuntos de datos digitales sucesivos se producen determinando diferencias posicionales entre los dientes individuales seleccionados en el conjunto de datos iniciales y el conjunto de datos finales e interpolando dichas diferencias. Tal interpolación puede realizarse sobre tantas etapas discretas como pueda desearse, normalmente por lo menos tres, a menudo por lo menos cuatro, a más menudo por lo menos diez, a veces por lo menos veinticinco, y ocasionalmente cuarenta o más. Muchas veces, la interpolación será una interpolación lineal para alguna o todas las diferencias posicionales. Alternativamente, la interpolación puede ser no lineal. En una realización preferida, la interpolación no lineal la calcula automáticamente el ordenador utilizando técnicas de programación de trayectoria y detección de colisiones para evitar interferencias entre los dientes individuales. Las diferencias posicionales corresponden a los movimientos de los dientes donde el movimiento lineal máximo de cualquier punto en un diente es de 2 mm o menos, siendo normalmente de 1 mm o menos, y siendo a menudo de 0,5 mm o menos. A menudo, el usuario especificará determinadas disposiciones intermedias objetivo de los dientes, denominadas imágenes clave, que se incorporan directamente en los conjuntos intermedios de datos digitales. Los procedimientos de la presente invención determinan entonces los conjuntos sucesivos de datos digitales entre las imágenes clave de la manera descrita anteriormente, por ejemplo por interpolación lineal o no lineal entre las imágenes clave. Las imágenes clave pueden ser determinadas por un usuario, por ejemplo manipulando el individuo una imagen visual en el ordenador utilizado para generar los conjuntos de datos digitales, o alternativamente la puede proporcionar el profesional como prescripción de manera similar a la prescripción para la disposición final de los dientes. Todavía en otro aspecto, los procedimientos de acuerdo con la presente invención prevén la fabricación de una pluralidad de aparatos para la regulación incremental de la posición dental. Dichos procedimientos comprenden proporcionar un conjunto inicial de datos digitales, un conjunto final de datos digitales, y producir una pluralidad de conjuntos de datos digitales sucesivos que representan las sucesivas disposiciones de dientes objetivo, substancialmente tal como se ha descrito. Los aparatos dentales se fabrican entonces en base a por lo menos algunos de los conjuntos de datos digitales que representan las sucesivas disposiciones de los dientes. Preferiblemente, la etapa de fabricación comprende controlar una máquina de fabricación en base a los sucesivos conjuntos de datos digitales para producir sucesivos modelos positivos de las disposiciones deseadas de los dientes. Los aparatos dentales se producen entonces como negativos de los modelos positivos utilizando técnicas de fabricación convencionales por presión positiva o vacío. La máquina de fabricación puede comprender un máquina de estereolitografía u otra similar que se base en endurecer selectivamente un volumen de resina polimérica no endurecida pasando un láser para endurecer selectivamente la resina en una forma basada en el conjunto de datos digitales. Otras máquinas de fabricación que podrían utilizarse en los procedimientos de la presente invención incluyen máquinas de herramientas y máquinas de deposición de cera. Todavía en otro aspecto, los procedimientos de la presente invención para fabricar un aparato dental comprenden proporcionar un conjunto de datos digitales que representan una disposición modificada de los dientes para un paciente. Se utiliza entonces una máquina de fabricación para producir un modelo positivo de la disposición modificada de los dientes en base al conjunto de datos digitales. El aparato dental se produce entonces como el negativo de modelo positivo. La máquina de fabricación puede ser una máquina de estereolitografía u otra tal como se ha describo anteriormente, y el modelo positivo se produce mediante técnicas convencionales de moldeado de presión o vacío. Todavía en otro aspecto, los procedimientos para fabricar un aparato dental de acuerdo con un ejemplo descrito para una mejor comprensión de la presente invención comprenden proporcionar un primer conjunto de datos digitales que representan una disposición modificada de los dientes para un paciente. Después se produce un segundo conjunto de datos digitales a partir del primer conjunto de los datos digitales, donde el segundo conjunto de datos representa un modelo negativo de la disposición modificada de los dientes. La máquina de fabricación se controla entonces en base al segundo conjunto de datos digitales para producir el aparato dental. La máquina de fabricación normalmente se basará en endurecer selectivamente una resina no endurecida para producir el aparato. El aparato comprende típicamente una estructura de polímero que presenta forma de cavidad para recibir y recolocar de manera elástica los dientes de una disposición inicial de los dientes a la disposición modificada de los dientes. BREVE DESCRIPCIÓN DE LOS DIBUJOS ES 2 367 282 T3 La figura 1A ilustra la mandíbula de un paciente y proporciona una indicación general de cómo pueden moverse los dientes mediante los procedimientos y el aparato descritos para una mejor comprensión de la presente invención. La figura 1B ilustra un único diente de la figura 1A y define cómo se determinan las distancias de movimiento de los dientes. La figura 1C ilustra la mandíbula de la figura 1A junto con un aparato para la regulación incremental de la posición dental que ha sido fabricado de acuerdo con el procedimiento de la presente invención. La figura 2 es un diagrama de bloques que ilustra las etapas de la presente invención para producir aparatos para la regulación incremental de la posición. La figura 3 es un diagrama de bloques que expone las etapas para manipular un conjunto inicial de datos digitales que representa una disposición inicial de los dientes para producir un conjunto final de datos digitales correspondiente a una disposición final deseada de los dientes. La figura 4A es un diagrama de flujo que ilustra una herramienta de borrado para los procedimientos descritos. La figura 4B ilustra el volumen de espacio que está borrando el programa de la figura 4A. La figura 5 es un diagrama de flujo que ilustra un programa para igualar componentes de alta resolución y baja resolución en los conjuntos de datos de la figura 3. La figura 6A es un diagrama de flujo que ilustra un programa para realizar la etapa de detección del algoritmo de detección de la cúspide. La figura 6B es un diagrama de flujo que ilustra un programa para realizar la etapa del rechazo del algoritmo de detección de la cúspide. La figura 7 ilustra el procedimiento para generar múltiples conjuntos intermedios de datos digitales que se utilizan para producir los aparatos de regulación de la presente invención. La figura 8A es un diagrama de flujo que ilustra las etapas realizadas por el algoritmo de programación de la trayectoria. 6 ES 2 367 282 T3 La figura 8B es un diagrama de flujo que ilustra las etapas para realizar la función visibilidad de acuerdo con una realización. La figura 8C es un diagrama de flujo que ilustra las etapas para realizar la función niños de acuerdo con una realización. La figura 8D es un diagrama de flujo que ilustra las etapas para llevar a cabo la etapa de programación de la trayectoria 128 de la figura 8A. La figura 9A es un diagrama de flujo que ilustra las etapas para realizar una prueba de colisión recursiva durante la detección de la colisión. La figura 9B es un diagrama de flujo que ilustra la división de nodos realizada durante la detección de la colisión de acuerdo con una realización. La figura 9C es un diagrama de flujo que ilustra las etapas para proporcionar información de movimiento adicional al procedimiento de detección de colisión. La figura 10 ilustra procesos alternativos para producir una pluralidad de aparatos de acuerdo con los procedimientos de la presente invención utilizando conjuntos de datos digitales que representan los diseños intermedios y finales de los aparatos. La figura 11 es un diagrama de bloques simplificado de un sistema de procesamiento de datos que incorpora un ejemplo útil para una mejor comprensión de la presente invención. DESCRIPCIÓN DE REALIZACIONES ESPECÍFICAS Y EJEMPLOS ÚTILES PARA UNA MEJOR COMPRENSIÓN DE LA INVENCIÓN De acuerdo con los ejemplos descritos para una mejor comprensión de la presente invención, se disponen sistemas y procedimientos para el movimiento incremental de los dientes utilizando una pluralidad de aparatos discretos, en el que cada aparato mueve sucesivamente uno o más de los dientes del paciente unas distancias relativamente pequeñas. Los movimientos de los dientes estarán asociados normalmente al tratamiento ortodóncico, incluyendo la traslación en todas las tres direcciones ortogonales respecto a una línea central vertical, el giro de la línea central del diente en las dos direcciones ortodóncicas (angulación de raíz y torsión), así como el giro alrededor de la línea central. Haciendo referencia ahora a la figura 1A, una mandíbula representativa 100 incluye dieciséis dientes 102. El ejemplo descrito para una mejor comprensión de la presente invención está destinado a mover por lo menos algunos de estos dientes desde una disposición inicial de los dientes a una disposición final de los dientes. Para comprender cómo pueden moverse los dientes se ha dibujado una línea central arbitraria (CL) a través de uno de los dientes 102. Con referencia a esta línea central (CL), los dientes pueden moverse en las direcciones ortogonales representadas por los ejes 104, 106, y 108 (donde se encuentra la línea central 104). La línea central puede girar alrededor del eje 108 (angulación de raíz) y 104 (torsión) tal como se indica mediante las flechas 110 y 112, respectivamente. Además, el diente puede girar alrededor de la línea central, tal como se ha representado por la flecha 114. De este modo pueden realizarse todos los movimientos libres posibles de los dientes. Haciendo referencia ahora a la figura 1B, la magnitud de cualquier movimiento de los dientes se obtiene mediante los procedimientos y dispositivos fabricados de acuerdo con los procedimientos de la presente invención se definirá en términos de traslación lineal máxima de cualquier punto P en un diente 102. Cada punto P i experimentará una traslación acumulativa a medida que ese diente se mueve en cualquiera de las direcciones ortogonales o rotativas definidas en la figura 1A. Es decir, aunque el punto normalmente seguirá una trayectoria no lineal, existirá una distancia lineal entre cualquier punto del diente cuando se determina en cualquiera de dos instantes durante el tratamiento. Así, de hecho, un punto arbitrario P 1 puede experimentar una traslación real de lado a lado según se indica por la flecha d 1, mientras que un segundo punto arbitrario P 2 puede avanzar a lo largo de una trayectoria arqueada, resultando en una traslación final d 2. Muchos aspectos se definen en términos de movimiento permisible máximo de un punto P i inducido por los procedimientos en cualquier diente particular. Dicho movimiento máximo de los dientes, a su vez, viene definido como la traslación lineal máxima de ese punto P i en el diente que experimenta el movimiento máximo para ese diente en cualquier etapa de tratamiento. Haciendo referencia ahora a la figura 1C, los sistemas descritos para una mejor comprensión de la presente invención comprenden una pluralidad de aparatos para la regulación incremental de la posición. Los aparatos están destinados a efectuar una recolocación incremental de dientes individuales en la mandíbula tal como se ha descrito en general anteriormente. En un sentido más amplio, los procedimientos descritos para una mejor comprensión de la presente invención pueden emplear cualquier posicionador y retén conocido, u otros aparatos desmontables que se conocen para terminar y mantener las posiciones de los dientes en relación con el tratamiento ortodóncico convencional. Los sistemas descritos para una mejor comprensión de la presente invención, al contrario que el aparato y los sistemas anteriores, proporcionarán una pluralidad de dichos aparatos destinados para que los lleve un paciente sucesivamente para conseguir una recolocación gradual de los dientes tal como se describe. Un aparato preferido 100 comprenderá un estructura de polímero que presenta una cavidad conformada para recibir y recolocar de manera elástica los dientes de una disposición de los dientes a una disposición sucesiva de los dientes. La estructura de polímero encajará 7 ES 2 367 282 T3 preferiblemente, aunque no necesariamente, sobre todos los dientes presentes en la mandíbula superior o inferior. A menudo, solamente algún(os) diente(s) se recolocará(n) mientras otro(s) diente(s) proporcionará(n) una base o zona de anclaje para mantener el aparato de recolocación en posición mientras se aplica la fuerza elástica de recolocación contra el diente o dientes que se han de recolocar. En casos complejos, sin embargo, muchos o la mayoría de los dientes se recolocarán en algún punto durante el tratamiento. En tales casos, los dientes que se mueven también pueden servir de base o anclaje para mantener el aparato de recolocación. Además, las encías y/o la paleta pueden servir como zona de anclaje, permitiendo de este modo recolocar simultáneamente todos o casi todos los dientes. El aparato de polímero 100 de la figura 1C está formado preferiblemente de una lámina delgada de polímero de elastómero apropiado, tal como un material dental de conformación térmica Tru-Tain de 0,0762 cm (0,03 pulg.), Tru-Tain Plastics, Rochester, Minnesota 55902. Normalmente no se proporcionarán alambres u otros medios para mantener el aparato en posición sobre los dientes. En algunos casos, sin embargo, será deseable o necesario proporcionar anclajes individuales en los dientes con correspondientes receptáculos o aberturas en el aparato 100 para que el aparato pueda aplicar una fuerza hacia arriba sobre el diente que no sería posible en ausencia de dicho anclaje. En lo sucesivo se describen procedimientos específicos para producir los aparatos 100. Haciendo referencia ahora la figura 2, se describirá el procedimiento global de la presente invención para producir los aparatos para la regulación incremental de la posición dental para un uso posterior por parte de un paciente para la recolocación de sus dientes. En primer lugar, se obtiene un conjunto de datos digitales que representan una disposición inicial de los dientes, denominado en lo sucesivo IDDS. El IDDS puede obtenerse de varias maneras. Por ejemplo, los dientes del paciente pueden escanearse o representarse utilizando una tecnología conocida, tal como radiografía, radiografía tridimensional, imágenes o conjuntos de datos tomográficos asistido por ordenador, imágenes por resonancia magnética, etc. Los procedimientos para digitalizar dichas imágenes convencionales para producir conjuntos de datos útiles en la presente invención son conocidos y se escriben en la literatura de patente y médica. En general, sin embargo, dichos procedimientos se basarán primero en obtener un molde de yeso de los dientes del paciente mediante técnicas conocidas, tales como las descritas en Graber, Orthodontics: Principle and Practice, Segunda Edición, Saunders, Philadelphia, 1969, págs. 401-415. Tras obtener el molde de los dientes puede escanearse digitalmente utilizando un escáner de láser convencional u otro sistema de adquisición de rangos para producir el IDDS. Es evidente que el conjunto de datos producido por el sistema de adquisición de rangos puede convertirse a otros formatos para que sea compatible con el programa que se utiliza para manipular imágenes dentro del conjunto de datos, tal como se describe con mayor detalle a continuación. En la patente americana nº 5.605.459, por ejemplo, se describen técnicas generales para producir moldes de yeso de los dientes y generar modelos digitales utilizando técnicas de exploración con láser. Existe una variedad de sistemas de adquisición de rangos, clasificados generalmente según si el proceso de adquisición requiere contacto con el objeto tridimensional. Un sistema de adquisición de rangos de tipo por contacto utiliza una sonda que presente múltiples grados de libertad de traslación y/o rotación. Registrando el desplazamiento físico de la sonda a medida que se retira a través de la superficie de la muestra se realiza una representación del objeto de la muestra que puede leerse por un ordenador. Un dispositivo de adquisición de rangos de tipo sin contacto puede ser un sistema de tipo reflectante o bien un sistema de tipo transmisor. Existe una variedad de sistemas reflectantes en uso. Algunos de estos sistemas reflectantes utilizan fuentes de energía incidente no óptica tales como radar o sonar de microondas. Otros utilizan energía óptica. Esos sistemas de tipo sin contacto que trabajan mediante energía óptica reflejada contienen, además, una instrumentación especial configurada para permitir llevar a cabo determinadas técnicas de medición (por ejemplo, radar de imágenes, triangulación e interferometría). Un sistema de adquisición de rangos preferido es un escáner óptico, reflectante, de tipo sin contacto. Los escáneres de tipo sin contacto se prefieren porque son intrínsecamente no destructivos (es decir, no dañan el objeto de la muestra), se caracterizan generalmente por una mayor resolución de captura y exploran una muestra en un período de tiempo relativamente corto. Un escáner de este tipo es el Cyberware Modelo 15 fabricado por Cyberware, Inc., Monterey, California. Los escáneres de tipo sin contacto o de tipo con contacto pueden incluir también una cámara de color, que cuando está sincronizada con las capacidades de escaneado, proporciona un medio para capturar, en formato digital, una representación en color del objeto de la muestra. La importancia de esta capacidad adicional para capturar no sólo la forma del objeto de la muestra sino también su color se describe a continuación. En una realización preferida, se obtiene también una cera de mordida del paciente. La cera de mordida permite la exploración de las posiciones relativas de la dentición superior e inferior en una oclusión céntrica. Esto se consigue normalmente colocando primero el molde inferior delante del escáner, con los dientes orientados hacia arriba, después colocando la cera de mordida encima del molde inferior, y finalmente colocando el molde superior encima del molde inferior, con los dientes hacia abajo, apoyándose sobre la cera de mordida. Después se realiza una exploración cilíndrica para el molde inferior y superior en sus posiciones relativas. Los datos explorados proporcionan un modelo digital de resolución media que representa un objeto que es la combinación de los arcos del paciente situados en la misma configuración relativa que en la boca. El modelo digital actúa de plantilla que guía la colocación de los dos modelos digitales individuales (uno por arco). De manera más precisa, utilizando un software, por ejemplo el software de alineación CyberWare, cada arco digital se 8 ES 2 367 282 T3 alinea, a su vez, a la exploración en pares. Los modelos individuales se colocan entonces uno respecto al otro en correspondencia con los arcos de la boca del paciente. Los procedimientos de la presente invención se basarán en manipular el IDDS en un ordenador o estación de trabajo que tenga una interfaz gráfica de usuario adecuada (GUI) y un software apropiado para la visión y modificación de las imágenes. Los aspectos específicos del software se describirán más adelante. Aunque los procedimientos se basarán en la manipulación por ordenador de datos digitales, los sistemas descritos para una mejor comprensión de la presente invención que comprenden múltiples aparatos dentales con geometrías incrementalmente distintas pueden producirse mediante técnicas no asistidas por ordenador. Por ejemplo, pueden cortarse unos moldes de yeso obtenidos tal como se ha descrito anteriormente utilizando cuchillos, sierras, u otras herramientas de corte para permitir la recolocación de dientes individuales dentro del molde. Los dientes desconectados pueden mantenerse en posición entonces mediante cera blanda u otro material maleable, y puede prepararse entonces una pluralidad de disposiciones intermedias de los dientes utilizando dicho molde modificado de yeso de los dientes del paciente. Las diferentes disposiciones pueden utilizarse para preparar los conjuntos de múltiples aparatos, generalmente tal como se describe a continuación, utilizando técnicas de moldeo a presión y vacío. Dicha creación manual de los sistemas de aparatos descritos para una mejor comprensión de la presente invención será en general mucho menos preferida. Haciendo referencia de nuevo la figura 2, después de que se haya obtenido el IDDS, la información digital se introducirá en el ordenador u otra estación de trabajo para la manipulación. En la propuesta preferida, los dientes individuales y otros componentes serán cortados para permitir su recolocación o eliminación individual de los datos digitales. Después de liberar así los componentes, el usuario normalmente seguirá una prescripción u otra especificación escrita proporcionada por el profesional que le trata. Alternativamente, el usuario puede recolocarlos en base al aspecto visual o utilizando unas reglas y algoritmos programados en el ordenador. Una vez que el usuario está satisfecho con la disposición final, la disposición final del diente se incorpora en un conjunto final de datos digitales (FDDS). En base al IDDS y el FDDS, se genera una pluralidad de conjuntos de datos digitales intermedios (INTDDSs) para corresponder a sucesivas disposiciones de dientes intermedias. El sistema de aparatos para la regulación incremental de la posición puede fabricarse entonces en base a los INTDDSs, tal como se describe con mayor detalle a continuación. La figura 3 ilustra una técnica representativa para manipular el IDDS para producir el FDDS en el ordenador. Normalmente, los datos del escáner digital serán en alta resolución. Para reducir el tiempo del ordenador necesario para generar imágenes, se creará un conjunto paralelo de datos digitales que representa el IDDS a una resolución inferior. El usuario manipulará las imágenes en una resolución más baja mientras el ordenador actualizará el conjunto de datos de alta resolución según sea necesario. El usuario puede también ver/manipular el modelo de alta resolución si el detalle adicional proporcionado en ese modelo es útil. El IDDS también se convertirá en una estructura de datos quad edge si ya no se encuentra presente en esa forma. Una estructura de datos quad edge es una estructura de datos topológica definida en Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams, ACM Transactions of Graphics, Vol. 4, nº 4, Abril de 1985, págs. 74-123. Otras estructuras de datos topológicas, tales como la estructura de datos winged edge, también podrían utilizarse. Como etapa inicial, mientras se observa la imagen tridimensional de la mandíbula del paciente, incluyendo los dientes, las encías, y otro tejido oral, el usuario normalmente borrará la estructura que no sea necesaria para la manipulación de la imagen y/o la producción final de un aparato. Estas secciones no deseadas del modelo pueden eliminarse utilizando una herramienta de borrado para realizar una sustracción de modelización de sólidos. La herramienta está representada por un recuadro gráfico. El volumen a borrar (las dimensiones, la posición, y la orientación del recuadro) lo establece el usuario empleando la GUI. Típicamente, las secciones no deseadas incluirían zona de goma externa y la base del molde originalmente escaneado. Otra aplicación para esta herramienta es estimular la extracción de los dientes y el cepillado de las superficies de los dientes. Esto es necesario si se requiere un espacio adicional en la mandíbula para el posicionamiento final de un diente que ha de moverse. El profesional puede elegir determinar qué dientes serán cepillados y/o qué dientes serán extraídos. El cepillado permite que el paciente mantenga sus dientes cuando solamente se requiera un pequeño espacio. Es evidente que típicamente, la extracción y el cepillado, se utilizarán en la planificación del tratamiento solamente cuando tengan que extraerse y/o cepillarse los dientes reales del paciente antes de iniciar la recolocación de acuerdo con los procedimientos descritos para una mejor comprensión de la presente invención. La eliminación de secciones no deseadas y/o innecesarias del modelo aumenta la velocidad de procesamiento de datos y/o mejora la visualización. Las secciones no necesarias incluyen aquellas que no se requieren para la creación del aparato de recolocación de los dientes. La eliminación de estas secciones no deseadas reduce la complejidad y el tamaño del conjunto de datos digitales, acelerando así las manipulaciones del conjunto de datos y otras operaciones. Después de que el usuario haya colocado y dimensionado la herramienta de borrado y a través del software haya borrado la sección no deseada, se eliminarán todos los triángulos dentro del recuadro establecido por el usuario y los triángulos límite se modifican para dejar de borde liso y lineal. El software suprime todos los triángulos dentro del recuadro y recorta todos los triángulos que cruzan el borde del recuadro. Esto requiere generar nuevos vértices en el borde del recuadro. Los orificios creados en el modelo en las caras del recuadro se vuelven a triangular y cerrar utilizando los vértices creados recientemente. 9 ES 2 367 282 T3 Para definir los dientes individuales (o posiblemente grupos de dientes) que se moverán se utiliza una herramienta sierra. La herramienta separa la imagen escaneada en componentes gráficos individuales permitiendo que el software mueva los dientes u otras imágenes componentes independientes del resto de zonas del modelo. En una realización, la herramienta sierra define una trayectoria para cortar la imagen gráfica utilizando dos curvas B-spline cúbicas que se encuentran en el espacio, posiblemente limitadas a planos paralelos, abiertos o bien cerrados. Un conjunto de líneas conecta las dos curvas y muestra al usuario la trayectoria de corte general. El usuario puede editar los puntos de control en las curvas B-spline cúbicas, el grosor del corte de sierra, y el número de herramientas de borrado utilizada, tal como se describe a continuación. En una realización preferida alternativa, los dientes se separan utilizando la sierra como dispositivo de perforación, cortando el diente desde arriba con cortes verticales en sierra. La corona del diente, así como el tejido de las encías inmediatamente por debajo de la corona se separan del resto de la geometría, y se tratan como una unidad individual, denominada diente. Al mover este modelo, el tejido de las encías se mueve respecto a la corona, creando una primera aproximación de primer orden de modo que las encías volverán a formarse dentro de la boca de un paciente. Cada diente también puede separarse del modelo original recortado. Además, puede crearse una base a partir del modelo original recortado cortando las coronas de los dientes. El modelo resultante se utiliza como base para mover los dientes. Esto facilita la eventual fabricación de un molde físico a partir del modelo geométrico, tal como se describe a continuación. Grosor: Cuando se utiliza un corte para separar un diente, el usuario normalmente deseará que el corte sea tan delgado como sea posible. Sin embargo, el usuario puede querer que se realice un corte más grueso, por ejemplo, al cepillar dientes circundantes, tal como se ha descrito anteriormente. Gráficamente, el corte aparece como curva limitada por el grosor del corte en un lado de la curva. Número de elementos de borrado: Un corte comprende múltiples recuadros de borrado dispuestos unos al lado de otro como una aproximación lineal por segmentos de la trayectoria curva de la herramienta de sierra. El usuario selecciona el número de elementos de borrado, que determina la complejidad de la curva creada - cuanto mayor es el número de segmentos, mayor será la exactitud con la cual el corte sigue la curva. El número de elementos de borrado se muestra gráficamente por el número de líneas paralelas que conectan las dos curvas B-spline cúbicas. Una vez que se ha especificado completamente un corte de sierra, el usuario aplica el corte al modelo. El corte se realiza como secuencia de los elementos de borrado. En la figura 4A se muestra un algoritmo preferido. La figura 4B muestra una única iteración de corte tal como se describe en el algoritmo para una curva B-spline abierta. Para un corte vertical, las curvas se cierran con P A [O] y P A [S] el mismo punto y P B [O] y P B [S] siendo el mismo punto. En una realización, el software puede dividir automáticamente la herramienta de sierra en un conjunto de elementos de borrado en base a una medida de la suavidad entrada por el usuario. La sierra se subdivide de manera adaptativa hasta que una medida de error mide la desviación de la representación ideal respecto a la representación aproximada para que sea menor que un límite especificado por la configuración de la suavidad. La medida del error preferida utilizada compara la longitud lineal de la curva subdividida respecto a la longitud de arco de la curva Spline ideal. Cuando la diferencia es mayor que un límite calculado de la configuración de la suavidad, se añade un punto de subdivisión a lo largo de la curva Spline. En el software puede incluirse también una característica de vista previa. La característica de vista previa muestra un corte de sierra como las dos superficies que representan lados opuestos del corte. Esto permite al usuario considerar el corte final antes de aplicarlo al conjunto de datos del modelo. Después de que el usuario haya completado todas las operaciones de corte deseadas con la herramienta de sierra existen múltiples sólidos gráficos. Sin embargo, en este punto, el software no ha determinado qué triángulos de la estructura de datos quad edge pertenecen a qué componentes. El software selecciona un punto de partida aleatorio en la estructura de datos y cruza la estructura de datos utilizando la información de proximidad para encontrar todos los triángulos que están unidos entre sí, identificando un componente individual. Este proceso se repite comenzando con el triángulo cuya componente todavía no se ha determinado. Una vez que se ha cruzado toda la estructura de datos, todos los componentes se han identificado. Para el usuario, todos los cambios realizados en el modelo de alta resolución parecen producirse simultáneamente en el modelo de baja resolución, y viceversa. Sin embargo, no existe una correlación una-a-una entre modelos de diferente resolución. Por lo tanto, el ordenador iguala los componentes de alta resolución y de baja resolución como mejor puedan someterse a límites definidos. El algoritmo se describe en la figura 5. Detección de la cúspide: En una realización preferida, el software proporciona la capacidad de detectar las cúspides para un diente. Las cúspides son proyecciones puntiagudas en la superficie de masticación de un diente. La detección de la cúspide puede realizarse antes o bien después de realizarse la fase de corte. El algoritmo utilizado para la detección de la cúspide está compuesto por dos etapas: (1) etapa de detección, durante la cual se determina un conjunto de puntos del diente como candidatos para las posiciones de la cúspide; y (2) etapa de rechazo, durante la cual candidatos del conjunto de puntos son rechazados si no cumplen una serie de criterios asociados a las cúspides. En la figura 6A se muestra un algoritmo preferido para la etapa de detección. En la etapa de detección, una posible cúspide se ve como una isla en la superficie del diente, con la cúspide candidata en el punto más alto de la isla. Lo más alto se mide respecto al sistema de coordenadas del modelo, pero podría simplemente medirse con facilidad respecto al sistema de coordenadas local de cada diente si la detección se realiza después de la fase de corte del tratamiento. El conjunto de todas las posibles cúspides se determina buscando todos los máximos locales en el modelo del diente que se encuentren a una distancia especificada de la parte superior del recuadro limitador del modelo. Primero se designa el punto más alto en el modelo como primera cúspide candidata. A través de este punto pasa un plano perpendicular a la dirección a lo largo de la cual se mide la altura de un punto. Después, el plano desciende una pequeña distancia predeterminada a lo largo del eje Z. A continuación, todos los vértices conectados al diente y que se encuentran por encima del plano y en algún componente conectado se asocian a la cúspide candidata como cúspides. Esta etapa también se denomina etapa de relleno por difusión. De cada punto de la cúspide candidata se realiza una difusión hacia afuera, marcando cada vértice en el modelo visitado en este tema como parte de la correspondiente cúspide candidata. Después de que se haya completado la etapa de relleno por difusión se examina cada vértice en el modelo. Cualquier vértice que se encuentre encima del plano y no haya sido visitado por uno de los rellenos por difusión se añade a la lista de cúspides candidatas. Estas etapas se repiten hasta que el plano ha recorrido una distancia especificada. Aunque esta aproximación iterativa puede llevar más tiempo que una búsqueda de máximos locales, la aproximación descrita anteriormente da lugar a una lista más corta de cúspides candidatas. Al descender el plano una distancia finita en cada etapa se saltan los máximos locales muy pequeños que puedan producirse debido a datos ruidosos. Después de la etapa de detección, el algoritmo de detección de la cúspide procede con la etapa de rechazo. En la figura 6B se muestra un algoritmo preferido para la etapa de rechazo. En esta etapa se analizan las geometrías locales alrededor de cada una de las cúspides candidatas para determinar si poseen características de tipo no cúspide. Las cúspides candidatas que presentan características de tipo no cúspide se eliminan de la lista de cúspides candidatas. Pueden utilizarse distintos criterios para identificar características de tipo no cúspide. Según una prueba, la curvatura local de la superficie alrededor de la cúspide candidata se utiliza para determinar si la candidata posee características de tipo no cúspide. Tal como se ha representado en la figura 6B, la curvatura local de la superficie alrededor de la cúspide candidata se aproxima y después se analiza para determinar si es demasiado grande (superficie muy puntiaguda) o demasiado pequeña (superficie muy plana), en cuyo caso la candidata se elimina de la lista de cúspides candidatas. Para los valores mínimos y máximos de las curvaturas se utilizan valores conservadores para asegurar que no se han rechazado cúspides genuinas por error. Según una prueba alternativa, una medición de la suavidad se calcula en base a la media normal en una zona alrededor de la cúspide candidata. Si la media normal se desvía de la normal en la cúspide más de una cantidad específica, la cúspide candidata se rechaza. En una realización preferida, la desviación de un vector normal N de la cúspide normal CN se aproxima mediante la fórmula: 1- Abs (N*CN), ES 2 367 282 T3 que es cero si no hay desviación y 1 cuando N y CN son perpendiculares. Una vez que se han separado los dientes, el FDDS puede crearse a partir del IDDS. El FDDS se crea siguiendo la prescripción del ortodoncista, moviendo los dientes a su prescripción final. En una realización, la prescripción se introduce en un ordenador, que calcula algorítmicamente la posición final de los dientes. En realizaciones alternativas, un usuario puede mover los dientes a sus posiciones finales manipulando independientemente uno o más dientes mientras se cumplan las limitaciones de la prescripción. Debe apreciarse que las diferentes combinaciones de las técnicas descritas anteriormente pueden utilizarse también para llegar a la posición final de los dientes. El procedimiento preferido para crear el FDDS implica mover los dientes en una secuencia especificada. Primero, los centros de cada uno de los dientes se alinean a un arco estándar. Después, los dientes giran hasta que sus raíces se encuentran en la posición vertical apropiada. Posteriormente, los dientes giran alrededor de su eje vertical a la orientación apropiada. Los dientes se observan entonces desde el lado, y se trasladan verticalmente hacia su posición vertical apropiada. Finalmente, los dos arcos se colocan juntos, y los dientes se mueven ligeramente para asegurar que el arco superior e inferior encajan correctamente entre sí. El acoplamiento mutuo del arco superior e inferior se visualiza utilizando el algoritmo de detección de colisiones para resaltar en rojo los puntos de contacto de los dientes. Después de que los dientes y otros componentes se hayan colocado o eliminado de modo que se haya alcanzado la disposición final de los dientes, es necesario generar un plan de tratamiento, tal como se ilustra en la figura 7. El plan de tratamiento producirá en última instancia la serie de INTDDSs y FDDS tal como se ha descrito anteriormente. Para producir estos conjuntos de datos, es necesario definir o representar el movimiento de dientes individuales seleccionados de la posición inicial a la posición final en una serie de etapas sucesivas. Además, puede ser necesario añadir otras características a los conjuntos de datos para producir características deseadas en los aparatos de tratamiento. Por ejemplo, puede ser deseable añadir parches de cera a la imagen con el fin de definir cavidades o 11 ES 2 367 282 T3 rebajes para fines particulares. Por ejemplo, puede ser deseable mantener un espacio entre el aparato y zonas particulares de los dientes o la mandíbula para reducir el dolor de las gomas, evitar problemas periodontales, permitir una funda, y similares. Además, a menudo será necesario disponer un receptáculo o una abertura destinada a recibir un anclaje que tenga que colocarse en un diente para permitir manipular el diente en la manera que requiera el anclaje, por ejemplo levantado respecto a la mandíbula. Algunos procedimientos para la fabricación de aparatos de recolocación de los dientes requieren que los dientes separados y recolocados y otros componentes sean unificados en una única estructura continua para permitir la fabricación. En estos casos, se utilizan parches de cera para unir los componentes de otra manera desconectados de los INTDDSs. Estos parches se añaden al conjunto de datos por debajo de los dientes y por encima de la goma de modo que no afecten a la geometría de los aparatos de recolocación de los dientes. El software de aplicación permite añadir una variedad de parches de cera al modelo, incluyendo recuadros y esferas con dimensiones regulables. Los parches de cera que se añaden son tratados por el software como piezas adicionales de geometría, idénticos a todas las otras geometrías. De este modo, los parches de cera pueden recolocarse durante la trayectoria de tratamiento así como los dientes y otros componentes. El procedimiento preferido para separar los dientes utilizando perforación vertical, tal como se ha descrito anteriormente, elimina la necesidad de la mayoría de estos parches de cera. En el proceso de fabricación, que se basa en la generación de modelos positivos para producir el aparato de recolocación, al añadir un parche de cera al modelo gráfico se generará un molde positivo que tiene la misma geometría del parche de cera añadido. Como que el molde es un positivo de los dientes y el aparato es un negativo de los dientes, cuando el aparato se forma sobre el molde, el aparato se formará también alrededor del parche de cera que se ha añadido al molde. Cuando se coloca en la boca del paciente, el aparato dejará de este modo un espacio entre la superficie de la cavidad interna del aparato y los dientes del paciente o las gomas. Además, el parche de cera puede utilizarse para formar un rebaje o una abertura dentro del aparato que se acopla a un anclaje colocado en los dientes para mover el diente en las direcciones que de otro modo no podría ser conseguirse. Además de dichos parches de cera, un componente individual, generalmente un diente, puede escalarse a un tamaño menor o mayor, lo que se traducirá en un aparato fabricado con ajuste más o menos apretado, respectivamente. La planificación del tratamiento es extremadamente flexible al definir el movimiento de los dientes y otros componentes. El usuario puede cambiar el número de etapas de tratamiento, así como controlar individualmente la trayectoria y la velocidad de los componentes. Número de etapas de tratamiento: El usuario puede cambiar el número de etapas de tratamiento deseadas del estado inicial de los dientes al estado objetivo. Cualquier componente que no se mueva se supone que permanece fijo y, de este modo, se supone que su posición final es la misma que la posición inicial (asimismo para todas las posiciones intermedias, salvo que se defina una o más imágenes clave para ese componente). Imágenes clave: El usuario puede especificar también imágenes clave seleccionando un estado intermedio y haciendo cambios a la(s) posición(es) del componente. Salvo que se indique lo contrario, el programa interpola linealmente de manera automática entre todas las posiciones especificadas por el usuario (incluyendo la posición inicial, todas las posiciones de imagen clave, y la posición objetivo). Por ejemplo, si solamente se define una posición final para un componente particular, cada etapa posterior tras la etapa inicial simplemente mostrará el componente una distancia lineal y un giro iguales (que se especifica por un cuaternión) más cerca de la posición final. Si el usuario especifica dos imágenes clave para ese componente, éste se moverá linealmente desde la posición inicial a través de diferentes etapas hacia la posición definida por la primera imagen clave. Después se moverá posiblemente en una dirección distinta, linealmente a la posición definida por la segunda imagen clave. Finalmente, se moverá, posiblemente todavía en un dirección distinta, linealmente a la posición objetivo. El usuario puede especificar también una interpolación no lineal entre las imágenes clave. Se utiliza una curva Spline para especificar la función de interpolación de manera convencional. Estas operaciones pueden realizarse independientemente para cada componente, de manera que una imagen clave para un componente no afecte a otro componente, a menos que el otro componente también sea movido por el usuario en esa imagen clave. Un componente puede acelerarse a lo largo de una curva entre las etapas 3 y 8, mientras que otro se mueve linealmente desde la etapa 1 a 5, y entonces cambia de dirección repentinamente y reduce la velocidad a lo largo de una trayectoria lineal hacia la etapa 10. Esta flexibilidad permite un alto grado de libertad para la planificación del tratamiento de un paciente. En una realización, el software determina automáticamente la trayectoria del tratamiento en base al IDDS y el FDDS. Esto normalmente se consigue utilizando un algoritmo de planificación de la trayectoria que determine la velocidad a la cual se mueve cada componente, es decir, un diente, a lo largo de una trayectoria recta de la posición inicial a la posición final. El algoritmo de planificación de la trayectoria determina la trayectoria de tratamiento a la vez que evita la ida y vuelta que es el término utilizado por los ortodoncistas para referirse al movimiento de un diente a lo largo de una distancia mayor de la absolutamente necesaria para poner los dientes rectos. Este movimiento es muy indeseable, y tiene potenciales efectos secundarios negativos en el paciente. Para evitar la ida y vuelta, al algoritmo de planificación de la trayectoria programa u organiza los movimientos de todos los dientes limitándolos a la trayectoria en línea recta 12 ES 2 367 282 T3 más corta entre la posición inicial y final, a la vez que evita todas las interferencias entre dientes separados. El algoritmo de planificación de la trayectoria utiliza una técnica de búsqueda aleatoria para encontrar una trayectoria sin obstáculos a través de un espacio de configuración que describa posibles planes de tratamiento. A continuación se describe una realización preferida del algoritmo para el movimiento de planificación entre dos imágenes clave globales definidas por el usuario. La planificación en un intervalo de tiempo que incluye imágenes clave intermedias se consigue dividiendo el intervalo de tiempo en subintervalos que no incluyen imágenes clave intermedias, planificando cada uno de estos intervalos de manera independiente, y concatenando después los programas resultantes. El diagrama de flujo 120 de la figura 8A representa un algoritmo de planificación de la trayectoria simplificado de acuerdo con una realización. Tal como se muestra en la figura 8A, una primera etapa 122 implica la construcción de la descripción del espacio de configuración. Una configuración en este contexto se refiere a un conjunto de posiciones determinadas de todos los dientes que se consideran para el movimiento. Cada una de estas posiciones puede describirse de múltiples maneras. En una realización preferida, las posiciones se describen mediante una transformación afín para especificar un cambio en la posición y una transformación rotacional para especificar el cambio en la orientación de un diente de su posición inicial a su posición final. Las posiciones intermedias de cada diente se describen mediante un par de números que especifican hasta dónde interpolar la posición y la orientación entre los dos puntos finales. Una configuración consiste así en dos números para cada par de dientes que se mueven, y el espacio de configuración se refiere al espacio de todos los pares de números citados. De este modo, el espacio de configuración es un espacio cartesiano, en el que cualquier posición puede interpretarse como que especifica las posiciones de todos los dientes. La transformación afín que describe el movimiento de cada diente de su posición inicial a su posición final se descompone en los componentes de traslación y rotación; estas transformaciones se interpolan de manera independiente con parámetros escalares que se consideran dos dimensiones del espacio de configuración. Todo el espacio de configuración consiste así en dos dimensiones por diente movido, todos los cuales se tratan de manera equivalente durante la búsqueda subsiguiente. El espacio de configuración está hecho de espacio libre y espacio obstruido. Las configuraciones libres son las que representan posiciones de los dientes válidas y físicamente realizables, mientas que las obstruidas son las que no. Para determinar si una configuración es libre u obstruida, se crea un modelo para las posiciones de los dientes que describe la configuración. Entonces se aplica un algoritmo de detección de colisiones para determinar si cualquier geometría que describa las superficies del diente se cruzan. Si no hay obstrucciones, el espacio se considera libre; de lo contrario está obstruido. El algoritmo de detección de colisiones se describe a continuación con mayor detalle. En la etapa 124 se define una función visibilidad V(s i, s 2) la cual toma dos vectores en el espacio de configuración, s 1 y s 2, como entrada y devuelve un valor booleano verdadero o falso. La función visibilidad devuelve un valor verdadero si y sólo si una trayectoria de línea recta que conecta s 1 y s 2 atraviesa completamente una zona libre y no obstruida del espacio de configuración. En la figura 8B se muestra un algoritmo preferido para la función visibilidad. La función visibilidad se calcula de manera aproximada analizando el modelo de los dientes para determinar interferencias en puntos muestreados de manera discreta a lo largo de la línea s 1-s 2. Para aumentar la eficacia de la función visibilidad pueden utilizarse técnicas tales como terminación temprana en fallo o selección del orden de puntos de muestra subdividiendo de manera recurrente el intervalo a analizar. En la etapa 126 de la figura 8A se define una función niños C(s) cuyo parámetro de entrada, s, es un vector en el espacio de configuración y que devuelve un conjunto de vectores, sc en el espacio de configuración. La figura 8C representa un diagrama de flujo simplificado que ilustra las etapas que se siguen para calcular la función niños C(s). Cada vector dentro del conjunto s c satisface la propiedad de que V (s, s c) es verdadero y que cada uno de sus componentes es mayor o igual que el componente correspondiente de s. Esto implica que cualquier estado representado por dicho vector es accesible desde s sin encontrar ninguna interferencia y sin realizar ningún movimiento que no sea en la dirección prescrita por el tratamiento. Cada vector del conjunto s c es creado perturbando cada componente de s por una cierta cantidad aleatoria positiva. La función visibilidad V(s, s c) se calcula entonces y s se añade al conjunto s c si la función visibilidad devuelve un valor booleano verdadero. Además, para cada vector generado se registra un indicador a su padre s para un uso posterior. Después de que el espacio de configuración se haya definido, en la etapa 128, se realiza una planificación de la trayectoria entre un estado inicial s init y un estado final s final. La figura 8D representa un diagrama de flujo preferido para realizar la etapa 128 representada en la figura 8A. Tal como se ilustra en la figura 8D, en la etapa 128a se define un conjunto de estados W para contener inicialmente sólo el estado inicial s init. Después, en la etapa 128b, se invoca la función visibilidad para determinar si V (s, s final) es verdadero para por lo menos un estado s i en W. Si la función visibilidad devuelve un valor booleano falso, en la etapa 128c, el conjunto de estados W se sustituye por la unión de C (s i) para todo s i en W. Las etapas 128b y 128c se repiten hasta que V (s i, s final) devuelve un valor booleano verdadero para cualquier s i que pertenezca a W. En la etapa 128d, para cada si el cual V (s i, s final) es verdadero, se construye una trayectoria no obstruida p i de s i a s init siguiendo los indicadores a los padres de nuevo a s init. En la etapa 128e, la trayectoria de s init a s final se construye entonces concatenando las trayectorias p i con la etapa final de si a sfinal. Si existen múltiples trayectorias de sinit a sfinal, la 13 ES 2 367 282 T3 longitud total de cada trayectoria se calcula en la etapa 128f. Finalmente, en la etapa 128g, se selecciona entonces la trayectoria con la longitud más corta como la trayectoria final. La longitud de la trayectoria seleccionada corresponde al tiempo total y las etapas requeridas para un plan de tratamiento. La trayectoria final resultante consiste en una serie de vectores, cada uno de los cuales representa un grupo de valores de los parámetros de interpolación de los componentes de traslación y rotación de las transformaciones de los dientes que se mueven. Tomados juntos, éstos constituyen un programa del movimiento de los dientes que evita interferencias entre los dientes. Algoritmo de detección de colisiones: El algoritmo de detección de colisiones o interferencias se basa en el algoritmo descrito en el artículo de SIGGRAPH, Stefan Gottschalk y otros. (1996): OBBTree: A Hierarchical Structure for Rapid Interference Detection. El algoritmo se centra alrededor de una subdivisión recursiva del espacio ocupado por un objeto, que está organizado de una manera similar a un árbol binario. Se utilizan triángulos para representar los dientes en el DDS. Cada nodo del árbol se denomina recuadro limitador orientado (OBB) y contiene un subconjunto de triángulos que aparecen en el padre del nodo. Los hijos de un nodo padre contienen entre ellos todos los datos de triángulos almacenados en el nodo padre. El recuadro limitador de un nodo está orientado de manera que encaja de manera ajustada alrededor de todos los triángulos en ese nodo. Los nodos de hoja del árbol contienen idealmente un único triángulo, pero posiblemente pueden contener más de un triángulo. La detección de colisiones entre dos objetos implica determinar si los árboles de OBB de los objetos se cruzan. La figura 9A establece un diagrama de flujo que representa una versión simplificada de una prueba de colisión recursiva para comprobar si un nodo N1 de un primer objeto se cruza con el nodo N2 de un segundo objeto. Si los OBBs de los nodos raíz de los árboles se superponen, se comprueba si los hijos de la raíz se superponen. El algoritmo procede de manera recursiva hasta que se han alcanzado los nodos de hoja. En este punto se utiliza una rutina de intersección de triángulos robusta para determinar si los triángulos en las hojas están implicados en una colisión. El algoritmo utilizado proporciona diversas mejoras al algoritmo de detección de colisiones descrito en el artículo de SIGGRAPH. En una realización se dispone un único procedimiento para construir árboles de OBB de manera lenta para ahorrar memoria y tiempo. Esta aproximación proviene de la observación de que existen partes del modelo que nunca estarán implicadas en una colisión, y por lo tanto no será necesario calcular el árbol de OBB para dichas partes del modelo. Los árboles de OBB se expanden dividiendo los nodos internos del árbol según sea necesario durante el algoritmo de determinación de colisiones recursivo, tal como se representa en la figura 9B. En otra realización, los triángulos en el modelo que no se requieren para los datos de colisión también pueden excluirse específicamente de la consideración al construir un árbol de OBB. Tal como se ha representado en la figura 9C, se proporciona información adicional al algoritmo de colisiones para especificar objetos en movimiento. El movimiento puede verse en dos niveles. Los objetos pueden conceptualizarse como que se mueven en sentido global, o pueden conceptualizarse como que se mueven respecto a otros objetos. La información adicional mejora el tiempo empleado para la detección de colisiones evitando volver a calcular la información de colisiones entre objetos que se encuentran en posición de reposo entre sí ya que el estado de la colisión entre dichos objetos no varía. El software también puede incorporar una característica de movimiento, y el usuario la puede utilizar en cualquier punto, para animar automáticamente el movimiento del estado inicial al objetivo. Esto es útil para visualizar el movimiento del componente global en todo el proceso de tratamiento. Anteriormente se ha descrito que la interfaz de usuario preferida para la identificación de componentes es una GUI interactiva tridimensional. Para la manipulación de componentes se prefiere también una GUI tridimensional. Dicha interfaz proporciona al profesional o al usuario una interacción instantánea y visual con los componentes del modelo digital. Se prefiere sobre interfaces que permiten solamente simples órdenes de bajo nivel para dirigir al ordenador en la manipulación de un segmento particular. En otras palabras, se prefiere una GUI adaptada para la manipulación sobre una interfaz que acepte directivas, por ejemplo, solamente del tipo: traslade este componente 0,1 mm hacia la derecha. Dichas órdenes de bajo nivel son útiles para una sintonización fina, pero, si se trata de la única interfaz, los procesos de manipulación de componentes se convertirían en una interacción pesada y que lleva tiempo. Antes o durante el proceso de manipulación, uno o más componentes de los dientes pueden aumentarse con modelos de plantilla de raíces de los dientes. La manipulación de un modelo de diente aumentado con una plantilla de raíz es útil, por ejemplo, en situaciones en las que preocupa el impacto de los dientes por debajo de la línea de las encías. Estos modelos de plantilla podrían comprender, por ejemplo, una representación digitalizada de radiografías de los dientes del paciente. El software también permite añadir anotaciones a los conjuntos de datos las cuales pueden comprender texto y/o el número de secuencia del aparato. La anotación se añade como texto en relieve (es decir, se trata de una geometría tridimensional), de modo que aparecerá en el modelo positivo impreso. Si la anotación puede colocarse en una parte de la boca que quedará cubierta por un aparato de recolocación, pero es poco importante para el movimiento del diente, la anotación puede aparecer en el (los) aparato(s) de recolocación suministrado(s). 14 ES 2 367 282 T3 El software de identificación de componentes y de manipulación de componentes descrito anteriormente está diseñado para funcionar en una complejidad que viene dada por el nivel de formación del operador. Por ejemplo, el software de manipulación de componentes puede ayudar al operador de un ordenador, que carezca de formación ortodóncica, proporcionando retroalimentación respecto a las manipulaciones permisibles y prohibidas de los dientes. Por otra parte, un ortodoncista que tenga una mayor técnica en fisiología intraoral y dinámica del movimiento de los dientes puede utilizar el software de identificación y manipulación de componentes como herramienta y desactivar o de otra manera ignorar la información. Una vez que se han creado los conjuntos de datos intermedios y finales, los aparatos pueden fabricarse según se ilustra en la figura 10. Preferiblemente, los procedimientos de fabricación emplearán un dispositivo de formación rápida de prototipos 200 tal como una máquina de estereolitografía. Una máquina de formación rápida de prototipos particularmente adecuada es el modelo SLA-250/50 de 3D System, Valencia, California. La máquina de formación rápida de prototipos 200 endurecerá selectivamente una resina líquida u otra no endurecida en una estructura tridimensional que puede separarse de la resina no endurecida restante, lavarse, y utilizarse directamente como aparato o indirectamente como molde para producir el aparato. La máquina de formación rápida de prototipos 200 recibirá los conjuntos de datos digitales individuales y producirá una estructura correspondiente a cada uno de los aparatos deseados. En general, como que la máquina de formación rápida de prototipos 200 puede utilizar una resina que tenga unas propiedades mecánicas no-óptimas y que en general puede no ser aceptable para uso en pacientes, se preferirá utilizar la máquina formación de prototipos para producir moldes que, en efecto, sean modelos de dientes positivos de cada etapa sucesiva del tratamiento. Tras preparar los modelos positivos puede utilizarse una máquina de moldeo a presión o vacío convencional para producir los aparatos a partir de un material más apropiado, tal como un material dental de conformación térmica de 0,0762 cm (0,03 pulgadas), disponible de Tru-Tain Plastics, Rochester, Minnesota 55902. El equipo apropiado de moldeo a presión es el disponible bajo el nombre comercial BIOSTAR de Great Lakes Orthodontics, Ltd., Tonawanda, New York 14150. La máquina de moldeo 250 produce cada uno de los aparatos directamente a partir del modelo de diente positivo y el material deseado. Máquinas de moldeo por vacío apropiadas son las disponibles de Raintree Essix, Inc. Tras la producción, la pluralidad de aparatos que comprenden el sistema producido de acuerdo con la presente invención se suministran preferiblemente al profesional todos a la vez. Los aparatos serán marcados de alguna manera, típicamente mediante una enumeración secuencial directamente sobre los aparatos o en etiquetas, bolsitas, u otros elementos que vayan unidos a cada aparato o lo encierren, para indicar su orden de uso. Opcionalmente pueden acompañarse en el sistema instrucciones escritas que expliquen que el paciente ha de llevar los aparatos individuales en el orden marcado en los aparatos o en alguna otra parte en el envase. El uso de los aparatos de esta manera recolocará los dientes del paciente progresivamente hacia la disposición final de los dientes. La figura 11 es un diagrama de bloques simplificado de un sistema de procesamiento de datos 300 útil para una mejor comprensión de la presente invención. El sistema de procesamiento de datos 300 incluye típicamente por lo menos un procesador 302 que se comunica con una serie de dispositivos periféricos a través de un subsistema de canales 304. Estos dispositivos periféricos incluyen típicamente un subsistema de almacenamiento 306 (subsistema de memoria 308 y subsistema de almacenamiento de archivos 314), un conjunto de dispositivos de interfaz de usuario de entrada y salida 318, y una interfaz a redes exteriores 316, incluyendo la red de telefónica pública conmutada. Esta interfaz se muestra esquemáticamente como bloque módems e interfaz de red 316, y está conectado a correspondientes dispositivos de interfaz en otros sistemas de procesamiento de datos a través de una interfaz de redes de comunicación 324. El sistema de procesamiento de datos 300 podía ser un terminal o un ordenador personal de gama baja o un ordenador personal, estación de trabajo o una unidad central de gama alta. Los dispositivos de entrada de la interfaz de usuario incluyen típicamente un teclado y pueden incluir además un dispositivo señalador y un escáner. El dispositivo señalador puede ser un dispositivo señalador indirecto tal como un ratón, un ratón de bola, un panel táctil, o una tableta gráfica, o un dispositivo señalador directo tal como una pantalla táctil incorporada en el monitor. También son posibles otros tipos de dispositivos de entrada de la interfaz de usuario, tales como sistemas de reconocimiento de voz. Los dispositivos de salida de la interfaz de usuario incluyen típicamente una impresora y un subsistema de representación, que incluye un controlador de pantalla y un dispositivo de visualización conectado al controlador. El dispositivo de visualización puede ser un dispositivo de tubo de rayos catódicos (CRT), de pantalla plana tal como una pantalla de cristal líquido (LCD), o un proyector. El subsistema de representación también puede proporcionar una representación no visual tal como una salida de audio. El subsistema de almacenamiento 306 mantiene la programación básica y las estructuras de datos que proporcionan la funcionalidad. Los módulos de software descritos anteriormente se almacenan típicamente en el subsistema de almacenamiento 306. El subsistema de almacenamiento 306 comprende típicamente un subsistema de memoria 308 y un subsistema de almacenamiento de ficheros 314. El subsistema de memoria 308 incluye típicamente una serie de memorias que comprenden una memoria de acceso aleatorio principal (RAM) 310 para el almacenamiento de instrucciones y datos durante la ejecución del programa y una memoria de sólo lectura (ROM) 312 en la cual se almacenan instrucciones fijas. En el caso de ordenadores personales compatibles con Macintosh la ROM incluiría partes del sistema operativo; en el caso de ordenadores personales ES 2 367 282 T3 compatibles con IBM, ésta incluiría la BIOS (sistema básico de entrada-salida). El subsistema de almacenamiento de ficheros 314 proporciona un almacenamiento persistente (no volátil) para archivos de programa y datos, e incluye típicamente por lo menos una unidad de disco duro y por lo menos una unidad de disco flexible (con medios extraíbles asociados). También puede haber otros dispositivos tales como una unidad CD-ROM y dispositivos ópticos (todos con sus medios extraíbles asociados). Además, el sistema puede incluir unidades del tipo de cartuchos extraíbles. Los cartuchos extraíbles pueden ser, por ejemplo, cartuchos de disco duro, tales como los comercializados por Syquest y otros, y cartuchos de disco flexible, tales como los comercializados por Iomega. Una o más de las unidades puede disponerse en un lugar remoto, tal como en un servidor de una red de área local o en un sitio de la red de Internet. En este contexto, el término subsistema de canales se utiliza de manera genérica para incluir cualquier mecanismo para permitir que los diferentes componentes y subsistemas se comuniquen entre sí según esté previsto. Excepto en los dispositivos de entrada y la pantalla, no es necesario que los otros componentes se encuentren en el mismo lugar físico. Así, por ejemplo, partes del sistema de almacenamiento de ficheros podrían conectarse a través de distintos medios de red de área local o de red de área amplia, incluyendo líneas telefónicas. De manera similar, no es necesario que los dispositivos de entrada y la pantalla se encuentren en el mismo lugar que el procesador, aunque se prevé que la presente invención en la mayoría de los casos se implementará en el contexto de PCs y estaciones de trabajo. El subsistema de canales 304 se muestra esquemáticamente como un único canal, pero un sistema típico tiene una serie de canales tales como un canal local y uno o más canales de expansión (por ejemplo, ADB, SCSI, ISA, EISA, MCA, NuBus, o PCI), así como puertos de serie y paralelos. Las conexiones de red se establecen generalmente a través de un dispositivo tal como un adaptador de red en uno de estos canales de expansión o un módem en un puerto de serie. El ordenador cliente puede ser un sistema de escritorio o un sistema portátil. Un escáner 320 es responsable de escanear los moldes de los dientes del paciente obtenidos del paciente o bien de un ortodoncista y de proporcionar la información del conjunto de datos digitales escaneados al sistema de procesamiento de datos 300 para un procesamiento adicional. En un entorno distribuido, el escáner 320 puede disponerse en un lugar remoto y comunicar la información del conjunto de datos digitales escaneados al sistema de procesamiento de datos 300 a través de la interfaz de red 324. La máquina de fabricación 322 fabrica aparatos dentales en base a la información del conjunto de datos intermedios y finales recibida del sistema de procesamiento de datos 300. En un entorno distribuido, la máquina de fabricación 322 puede disponerse en un lugar remoto y recibir la información del conjunto de datos del sistema de procesamiento de datos 300 a través de una interfaz de red 324. Aunque lo anterior es una descripción completa de las realizaciones preferidas y ejemplos útiles para una mejor comprensión de la invención, pueden utilizarse diferentes alternativas, modificaciones, y equivalentes. Por lo tanto, la descripción anterior no debe tomarse como una limitación del alcance de la invención el cual viene definido por las reivindicaciones adjuntas. 16 ES 2 367 282 T3


Reivindicaciones:

1. Procedimiento para fabricar un aparato dental (100), comprendiendo dicho procedimiento: proporcionar un conjunto de datos digitales que representan una disposición de dientes modificada para un paciente; controlar una máquina de fabricación (322) en base a los conjuntos de datos digitales para producir un modelo positivo 5 de la disposición de dientes modificada; y producir el aparato dental (100) como un negativo del modelo positivo. 2. Procedimiento según la reivindicación 1, caracterizado por el hecho de que la etapa de control comprende: proporcionar un volumen de resina polimérica no endurecida; escanear un láser para endurecer selectivamente la resina en una forma basada en el conjunto de datos digitales para 10 producir el modelo positivo. 3. Procedimiento según la reivindicación 1 o 2, caracterizado por el hecho de que la etapa de producción comprende modelar el aparato (100) sobre el modelo positivo. 17 ES 2 367 282 T3 18 ES 2 367 282 T3 19 ES 2 367 282 T3 ES 2 367 282 T3 21 ES 2 367 282 T3 22 ES 2 367 282 T3 23 ES 2 367 282 T3 24 ES 2 367 282 T3 ES 2 367 282 T3 26 ES 2 367 282 T3 27 ES 2 367 282 T3 28 ES 2 367 282 T3 29 ES 2 367 282 T3 ES 2 367 282 T3 31 ES 2 367 282 T3 32 ES 2 367 282 T3 33 ES 2 367 282 T3 34 ES 2 367 282 T3 ES 2 367 282 T3 36




Acerca de · Contacto · Patentados.com desde 2007 hasta 2014 // Última actualización: 27/11/2014.