PROCEDIMIENTO DE ESTABILIZACION DE MERCURIO LIQUIDO MEDIANTE CEMENTO POLIMERICO DE AZUFRE, VIA SULFURO DE MERCURIO.

Procedimiento de estabilización de mercurio líquido mediante cemento polimérico de azufre, vía sulfuro de mercurio.

Procedimiento para la estabilización de mercurio líquido mediante la obtención de cementos poliméricos de azufre que comprende:

(a) transformación del mercurio líquido en sulfuro de mercurio (metacinabrio) mediante reacción química, en condiciones estequiométricas, entre el mercurio y el azufre elemental; y (b) obtención de cemento polimérico de azufre mediante la incorporación el sulfuro de mercurio obtenido en la etapa anterior, en una mezcla estable constituida por áridos, azufre elemental y un polímero de azufre.

Tipo: Patente de Invención. Resumen de patente/invención. Número de Solicitud: P200930672.

Solicitante: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC).

Nacionalidad solicitante: España.

Provincia: MADRID.

Inventor/es: ALONSO GAMEZ,MANUEL, ALGUACIL PRIEGO,FRANCISCO JOSE, LOPEZ GOMEZ,FELIX ANTONIO, LOPEZ DELGADO,AURORA.

Fecha de Solicitud: 9 de Septiembre de 2009.

Fecha de Publicación: .

Fecha de Concesión: 13 de Enero de 2012.

Clasificación PCT:

  • SECCION C — QUIMICA; METALURGIA > QUIMICA INORGANICA > COMPUESTOS QUE CONTIENEN METALES NO CUBIERTOS POR... > C01G13/00 (Compuestos de mercurio)

PDF original: ES-2355001_A1.pdf

 

google+ twitter facebook

Fragmento de la descripción:

Procedimiento de estabilización de mercurio líquido mediante cemento polimérico de azufre, vía sulfuro de mercurio.

La presente invención se refiere a un procedimiento para estabilizar el mercurio líquido mediante la utilización de cementos poliméricos de azufre, y previamente transformando el mercurio líquido en sulfuro de mercurio (metacinabrio).

Estado de la técnica

La amalgamación se define como la combinación del mercurio con un reactivo metálico tal como cobre, oro, zinc, aluminio, níquel, estaño, plata o azufre originándose un producto sólido, no volátil. De hecho, las amalgamas son soluciones semisólidas obtenidas por disolución entre el mercurio y un metal sólido. Este proceso se ha utilizado para la extracción de los metales preciosos de sus minerales (después de la amalgamación, la amalgama se somete a un tratamiento térmico para volatilizar el mercurio y recuperar el metal precioso). Aunque la amalgamación es un proceso relativamente barato y rápido para el tratamiento del mercurio líquido, las desventajas del proceso proceden de las dificultades para su empleo a mayor escala y la necesidad de utilizar ácido nítrico diluido para lograr una elevada eficacia. Además, la presencia de agua en la amalgama puede dar lugar a la formación de los hidróxidos del metal amalgamante que hace que el proceso sea inadecuado para el tratamiento del mercurio contaminado, por ejemplo con elementos radiactivos. Normalmente, el método no es capaz de estabilizar adecuadamente las formas inestables de mercurio en los materiales de residuos peligrosos.

En el caso de la reacción con azufre, varios autores lo consideran como un proceso de amalgamación sin embargo, de la combinación del mercurio con azufre resulta un sulfuro metálico, el cual es un nuevo compuesto y no una amalgama o aleación. Así, los procesos que incluyen la reacción con azufre son considerados como un proceso de estabilización. Normalmente, la "Mejor Tecnología Demostrada Disponible" (Best Demonstrated Available Technology - BDAT) para mezclas de residuos de mercurio elemental residual es la amalgamación, que consiste en la formación de una aleación con otros metales como el zinc, el cobre o el oro. Sin embargo, aunque la BDAT lo considere así, no se trata realmente de un proceso de amalgamación, debido a que la reacción con el azufre forma un sulfuro mercúrico

En algunos procesos el mercurio reacciona con el azufre pulverizado y/o azufre líquido (polisulfuro) para formar sulfuro mercúrico. El sulfuro mercúrico, el compuesto más estable formado entre el mercurio y el azufre, existe en dos formas estables. La primera es la forma cúbica tetraédrica (metacinabrio) de color negro y la otra forma estable es la forma hexagonal, de color rojo que se encuentra en la naturaleza como cinabrio. Ambas formas son insolubles en agua y en disoluciones ácidas. En disoluciones alcalinas con exceso de aniones de azufre el HgS se solubiliza según la reacción: HgS + S2- rightarrow HgS22-.

Otro método habitual para formar HgS consiste en disolver el mercurio en HCl, neutralizarlo para formar una disolución acuosa de HgCl2 y luego precipitar el sulfuro mercúrico mediante la adición de Na2S. Este método no puede ser aplicado a gran escala debido a que el cloruro mercúrico es ligeramente soluble en agua y se origina un efluente secundario con cierta cantidad de mercurio.

El mercurio soluble puede estar presente en materiales como los depositados en los vertederos, los sedimentos, etc., siendo a menudo física y económicamente imposible intentar eliminar el mercurio de estos materiales. Los efluentes que contienen mercurio procedente de estos depósitos pueden contaminar suministros de agua y terrenos. En la patente estadounidense US4354942 se describe un proceso para estabilizar in situ el mercurio soluble en depósitos de materiales que contienen mercurio. El proceso comprende el tratamiento de los depósitos con una cantidad de estabilizante constituido por un compuesto inorgánico de azufre (sulfuras, tiosulfatos metálicos alcalinos, tiosulfatos metálicos de alcalinotérreos, ditionitos metálicos de álcali y ditionitos metálicos de alcalinotérreos). Los compuestos inorgánicos de azufre reaccionan con el mercurio soluble para convertirlo en un compuesto de mercurio insoluble en agua.

La reacción directa entre el mercurio elemental y el azufre elemental para formar HgS es ampliamente conocida. El inconveniente de ese procedimiento es que la reacción entre el S elemental y el Hg no es total, es decir, puede ocurrir que después de la reacción, una parte del Hg elemental quede como tal, sin transformarse en HgS. El HgS es menos lixiviable que el Hg elemental y es un producto químicamente estable. Para evitar que algunos restos de mercurio queden ocluidos en el sulfuro se pueden utilizar tensioactivos para dispersar el mercurio elemental.

Por otro lado, el documento US5562589 describe un método de estabilización para el tratamiento de suelos, arena, dragado de vías fluviales y cenizas volantes de incineración de residuos (que contienen metales pesados y productos químicos orgánicos tóxicos o peligrosos, tal como los policlorobifenilos (PCB) o policlorodibenzo-p-dioxinas (PCDD)), utilizando azufre a alta temperatura. Los sustratos inorgánicos se mezclan con los residuos orgánicos y azufre, a una temperatura superior al punto de fusión de este. La mezcla resultante se mantiene entre 350-600ºC durante un tiempo suficiente para que tenga lugar la estabilización del sustrato. El vapor de azufre, generado en la reacción anterior, se puede reutilizar mediante su arrastre por un gas portador inerte (N2, CO2 o un flujo de vapor sobrecalentado). De este modo, los sustratos inorgánicos se convierten en materiales no lixiviables y no peligrosos y cualquier residuo químico orgánico presente se convierte simultáneamente en un polímero de carbón y azufre, dando lugar a un material inerte.

En el documento US6403044 se describe un proceso que incluye las etapas de: combinación de un residuo inicial que contiene mercurio con un polisulfuro y con un compuesto reactivo que contiene azufre, distinto del polisulfuro, para formar un material compuesto; y mezcla del material compuesto con el mercurio o los residuos de mercurio con el fin de formar el sulfuro mercúrico. Debido a que muchos residuos de mercurio contienen agua, el compuesto reactivo que contiene azufre reacciona con el mercurio en disolución acuosa. Como materiales portadores de azufre pueden utilizarse azufre elemental, azufre inorgánico (bisulfuro de metales alcalinos, mercaptanos, sulfuros de metales alcalino) y/o sus mezclas. Los polisulfuros actúan como activadores de la reacción entre el compuesto reactivo que contiene azufre y las formas inestables de mercurio, y preferentemente se seleccionan entre el grupo de los polisulfuros de calcio, polisulfuros de sodio y otros polisulfuros de alcalinotérreos y sus mezclas. Estas formas de polisulfuros son altamente solubles en agua. La etapa de mezcla se realiza mediante técnicas de mezcla intrusiva, utilizando un dispositivo que permite mezclar un material viscoso y expulsar o ventilar cualquier líquido vaporizado. Según los autores, el producto final puede pasar el Procedimiento de Lixiviación para la Caracterización de Tóxicos o test TCLP (Toxic Characterization Leach Procedure), y contener no más de 1000 ppm de mercurio elemental y/o formas ambientalmente inestables de especies de mercurio.

La reacción del azufre elemental con el mercurio es espontánea y altamente exotérmica a temperatura ambiente y su velocidad... [Seguir leyendo]

 


Reivindicaciones:

1. Procedimiento de estabilización de mercurio líquido que comprende una etapa (a) en la que se hace reaccionar mercurio líquido y azufre elemental en condiciones estequiométricas mediante un proceso de molienda.

2. Procedimiento según la reivindicación 1 que además comprende una etapa (b) en la que se añade el producto obtenido en la etapa (a) a una mezcla que comprende áridos, azufre elemental y un polímero de azufre.

3. Procedimiento según cualquiera de las reivindicaciones 1 ó 2, donde el azufre elemental empleado en la etapa (a) es azufre en polvo con un tamaño de partícula inferior a 60 μm.

4. Procedimiento según cualquiera de las reivindicaciones 1 a 3, donde el proceso de molienda se realiza a una velocidad entre 400 y 450 rpm durante un tiempo entre 15 y 60 min.

5. Procedimiento según la reivindicación 4, donde la velocidad de molienda es 400 rpm durante un tiempo de 60 min.

6. Procedimiento según cualquiera de las reivindicaciones 1 a 5, donde la molienda se realiza en un molino de bolas.

7. Procedimiento según la reivindicación 6, donde la proporción en peso bolas/mezcla de reacción está entre 5.3 y 10.7.

8. Procedimiento según la reivindicación 7, donde la proporción en peso bolas/mezcla de reacción es 5.4.

9. Procedimiento según cualquiera de las reivindicaciones 2 a 8, donde la etapa (b) se lleva a cabo a una temperatura de entre 130ºC y 165ºC.

10. Procedimiento según la reivindicación 9, donde la temperatura es de 140ºC.

11. Procedimiento según cualquiera de las reivindicaciones 2 a 9, donde los áridos comprenden grava de un tamaño de grano inferior a 6.3 mm, arena y carbonato cálcico.

12. Procedimiento según cualquiera de la reivindicaciones 2 a a 11, donde la proporción de grava es de entre 19% y 23% en peso respecto del peso total de la mezcla final de la etapa (b); arena en una proporción de entre 38% y 47% en peso respecto del peso total de la mezcla final de la etapa (b); y carbonato cálcico en una proporción de entre 6% y 8% en peso respecto del peso total de la mezcla final de la etapa (b).

13. Procedimiento según cualquiera de las reivindicaciones 1 a 12, donde la proporción de azufre elemental de la etapa (b) es de 10-15% en peso con respecto del peso total de la mezcla final de la etapa (b); la proporción de polímero de azufre es de 1-1.5% en peso con respecto del peso total de la mezcla final de la etapa (b) y la proporción de producto obtenido en la etapa (a) es de entre 6% y 30% en peso respecto del peso total de la mezcla final de la etapa (b).

14. Procedimiento según cualquiera de las reivindicaciones 2 a 13, que además comprende una etapa en la que la mezcla obtenida en la etapa (b) se deposita en un molde.