Motor híbrido de aire de ciclo dividido.

Un motor híbrido de aire de ciclo dividido (10, 74, 80, 84, 89,

94) que comprende:un cigüeñal (18) que gira alrededorde un eje del cigüeñal (20);

un pistón mecánico (24) que es recibido de forma deslizante dentro de un cilindro mecánico (14) y se conecta de formaoperativa al cigüeñal (18) de modo que el pistón mecánico (24) oscile a través de una carrera de expansión (o detrabajo) y una carrera de escape durante una sola rotación del cigüeñal (18);

un pistón de compresión (26) que es recibido de forma deslizante dentro de un cilindro de compresión (16) y seconecta de forma operativa al cigüeñal (18) de modo que el pistón de compresión (26) oscile a través de una carrera deadmisión y una carrera de compresión durante una sola rotación del cigüeñal (18); y

un depósito de aire (36) conectado de forma operativa entre el cilindro de compresión (16) y el cilindro mecánico (14) yque se puede operar de forma selectiva para que reciba el aire comprimido del cilindro de compresión (16) y para quesuministre aire comprimido al cilindro mecánico (14) para su uso en la transmisión de energía al cigüeñal (18) duranteel funcionamiento del motor; y unas válvulas (46, 50, 58, 82, 100, 102) que controlan selectivamente el flujo de gas queentra y sale de los cilindros de compresión (16) y de trabajo (14) y del depósito de aire (36) de modo que el motorpueda funcionar en un modo de potencia de aire precomprimido (PAP), en donde en el modo PAP:

el cilindro mecánico (14) recibe el aire comprimido del depósito (36) al inicio de una carrera de expansión del pistónmecánico (24) que se mezcla con el combustible durante la misma carrera de expansión y el combustible se enciende,se quema y se expande en la misma carrera de expansión, transmitiendo energía al cigüeñal (18).

Tipo: Patente Europea. Resumen de patente/invención. Número de Solicitud: E08105831.

Solicitante: SCUDERI GROUP LLC.

Nacionalidad solicitante: Estados Unidos de América.

Dirección: 111 ELM STREET, SUITE 4 WEST SPRINGFIELD, MA 01089 ESTADOS UNIDOS DE AMERICA.

Inventor/es: SCUDERI,SALVATORE O, SCUDERI,STEPHEN P.

Fecha de Publicación: .

Clasificación Internacional de Patentes:

  • F02B21/00 MECANICA; ILUMINACION; CALEFACCION; ARMAMENTO; VOLADURA.F02 MOTORES DE COMBUSTION; PLANTAS MOTRICES DE GASES CALIENTES O DE PRODUCTOS DE COMBUSTION.F02B MOTORES DE COMBUSTION INTERNA DE PISTONES; MOTORES DE COMBUSTION EN GENERAL (plantas de turbinas de gas F02C; plantas de motores de desplazamiento positivo de gas caliente o de productos de combustión F02G). › Motores caracterizados porcámaras de acumulación de aire.
  • F02B29/00 F02B […] › Motores caracterizados porestar provistos de otros dispositivos de alimentación o de barrido F02B 25/00, F02B 27/00 o F02B 33/00 - F02B 39/00; Detalles por sí mismo.
  • F02B33/22 F02B […] › F02B 33/00 Motorescaracterizados por estar provistos debombas de alimentación o de barrido. › con el cilindro de bombeo situado a un lado del cilindro motor, p. ej. siendo los cilindros paralelos.
  • F02D17/02 F02 […] › F02D CONTROL DE LOS MOTORES DE COMBUSTION (accesorios para el control automático de la velocidad en vehículos, que actúan sobre una sola subunidad del vehículo B60K 31/00; control conjunto de subunidades del vehículo de diferente tipo o diferente función, sistemas de control de la propulsión de vehículos de carretera para propósitos distintos que el control de una sola subunidad B60W; válvulas de funcionamiento cíclico para los motores de combustión F01L; control de la lubrificación de los motores de combustión F01M; refrigeración de los motores de combustión interna F01P; alimentación de los motores de combustión con mezclas combustibles o constituyentes de las mismas, p. ej. carburadores, bombas de inyección, F02M; arranque de los motores de combustión F02N; control del encendido F02P; control de las plantas motrices de turbinas de gas, de las plantas motrices por propulsión a reacción o de las plantas motrices de productos de la combustión, ver las clases relativas a estas plantas). › F02D 17/00 Control de los motores por puesta fuera de servicio individual de los cilindros; Funcionamiento en vacío o al ralentí de los motores (control o marcha en vacío por variación de las características de funcionamiento de las válvulas de admisión de las válvulas de escape F02D 13/00). › Puesta fuera de servicio (puesta fuera de servicio de los motores en los conjuntos multimotores F02D 25/04).

PDF original: ES-2391046_T3.pdf

 


Fragmento de la descripción:

Motor híbrido de aire de ciclo dividido CAMPO TÉCNICO Esta invención se refiere a motores de ciclo dividido y, más concretamente, a un motor de dicho tipo que incorpora un sistema híbrido de aire. ANTECEDENTES DE LA INVENCIÓN Puede que el término de motor de ciclo dividido, tal y como se utiliza en la presente solicitud, no tenga todavía un significado unívoco conocido por todos aquellos versados en motores. Por este motivo, por razones de claridad, se ofrece la siguiente definición del término motor de ciclo dividido según puede ser aplicado a los motores presentados con anterioridad y lo contemplado en la presente solicitud. Según lo contemplado aquí, un motor de ciclo dividido comprende: un cigüeñal que gira alrededor de un eje del cigüeñal; un pistón mecánico que es recibido de forma deslizante dentro de un cilindro mecánico y se conecta de forma operativa al cigüeñal de modo que el pistón mecánico oscile a través de una carrera de trabajo (o de expansión) y una carrera de escape durante una sola rotación del cigüeñal; un pistón de compresión que es recibido de forma deslizante dentro de un cilindro de compresión y se conecta de forma operativa al cigüeñal de modo que el pistón de compresión oscile a través de una carrera de admisión y una carrera de compresión durante una sola rotación del cigüeñal; y un conducto de gas que interconecta los cilindros mecánicos y de compresión, incluyendo el conducto de gas en una válvula de admisión y una válvula de escape (o cruce) que define una cámara de presión entre ellas. Por razones de claridad, a continuación se ofrece una lista de los acrónimos de los distintos modos de funcionamiento del motor descritos en el presente documento: AC Compresor de aire; AM Control del aire; CB Frenado por compresión; ICE Motor de combustión interna; PAP Potencia de aire precomprimido; PCA Aire de combustión precomprimido; En las Patentes Estadounidenses US 6.543.225 B2, US 6.609.371 B2 y US 6.952.923, todas ellas asignadas al cesionario de la presente invención, se presentan ejemplos de motores de combustión interna de ciclo dividido como el definido en el presente documento. Estas patentes contienen una amplia lista de las patentes estadounidenses y extranjeras y las publicaciones citadas como antecedentes en la asignación de estas patentes. El término “ciclo dividido” ha sido utilizado para estos motores ya que literalmente dividen los cuatro tiempos de un ciclo Otto de presión/volumen convencional (a saber, admisión, compresión, expansión y escape) en dos cilindros dedicados: un cilindro dedicado a la carrera de compresión a alta presión y otro cilindro dedicado a la carrera de trabajo a alta presión Últimamente se ha dedicado mucho tiempo a la investigación de motores híbridos de aire en comparación, por ejemplo, a los sistemas híbridos eléctricos. El sistema híbrido eléctrico requiere la adición al motor de ciclo de cuatro tiempos convencional de baterías y de un generador eléctrico y un motor. El híbrido de aire sólo necesita la adición de un depósito de aire a presión a un motor que incorpora las funciones de un compresor y de un motor neumático, junto con las funciones de un motor convencional para obtener las ventajas del sistema híbrido. Estas funciones incluyen el almacenamiento de aire a presión durante el frenado y la utilización del aire a presión para el accionamiento del motor durante el arranque y la aceleración subsiguientes. Sin embargo, parece que en las técnicas anteriores sólo se adaptaba un motor con un ciclo de cuatro tiempos convencional para que un solo cilindro realizara las funciones de compresión, combustión y control. Esto requiere entonces un sistema complejo de válvula y engranaje y un control capaz de conmutar de un modo de frenado por

compresión (CB) a un modo de control del aire (AM) y volver a un modo de motor de combustión interna tradicional (ICE) durante el funcionamiento.

En un ejemplo típico, donde no resulta necesario el almacenamiento o la utilización de aire comprimido para accionar

el vehículo, un motor híbrido de aire conforme a las técnicas anteriores funciona a modo de un motor de combustión interna convencional, donde los cuatro tiempos del ciclo Otto (admisión, compresión, expansión y escape) se realizan en cada uno de los pistones cada dos revoluciones del cigüeñal. No obstante, durante el modo de frenado por compresión, cada cilindro del motor convencional está configurado para actuar a modo de un compresor de aire de dos tiempos de pistón oscilante, accionado desde las ruedas del vehículo a través del movimiento del vehículo. El aire

es recibido de la atmósfera exterior en los cilindros del motor donde es comprimido y desplazado a un depósito de aire. El trabajo realizado por los pistones del motor absorbe la energía cinética del vehículo y desacelera o restringe su movimiento. De este modo, la energía cinética del movimiento del vehículo es transformada en energía de aire comprimido almacenada en el depósito de aire.

Durante el modo de control del aire, cada uno de los cilindros del motor está configurado para utilizar el aire comprimido almacenado y generar carreras de trabajo para una propulsión sin combustión. Esto puede conseguirse expandiendo primero el aire comprimido almacenado en los cilindros para bajar los pistones desde el punto muerto superior (TDC) hasta el punto muerto inferior (BDC) para una primera carrera de trabajo. A continuación, los pistones comprimen el gas expandido al desplazarse del BDC al TDC. Después el combustible es inyectado en los cilindros y

encendido justo antes del TDC. Los productos que se expanden de la combustión vuelven a accionar los pistones hacia abajo para una segunda carrera de trabajo durante la segunda revolución del cigüeñal.

Alternativamente, el control del aire puede conseguirse expandiendo el aire comprimido almacenado para bajar el pistón mecánico del TDC al BDC para una carrera de trabajo sin combustión por cada revolución del cigüeñal. Este

método alternativo de control del aire puede continuar hasta que la presión en el depósito de aire desciende por debajo de un nivel umbral, tras lo cual el motor puede pasar bien al modo de control de aire anteriormente descrito o a un modo de funcionamiento convencional de motor ICE.

Desde el punto de vista de la problemática, para poder pasar de un modo CB, AM e ICE a otro, el sistema de

válvula/tren de transmisión resulta complejo, costoso y difícil de controlar o mantener. Adicionalmente, dado que cada uno de los cilindros tiene que realizar todas las funciones de cada uno de los modos, no resulta fácil su optimización. Por ejemplo, los pistones y los cilindros tienen que estar diseñados para soportar un evento de combustión explosiva, incluso si sólo actúan como compresores de aire. Según esto, dadas las tolerancias y los materiales requeridos para ampliar el calor de la combustión, debe sacrificarse el rendimiento del modo del compresor.

Otro problema en la realización de todas las funciones de cada modo (ICE, CB y AM) en cada cilindro es que no pueden ejecutarse dos modos en paralelo (es decir, simultáneamente) . Dado que los sistemas híbridos de aire de técnicas anteriores hacen uso de motores convencionales, se ven limitados a funcionar en serie en cada uno de los modos, lo que representa una serie de limitaciones inherentes de sus capacidades. Por ejemplo, dado que el modo

CB no puede utilizarse cuando el motor está funcionando a modo de motor de combustión interna (en modo ICB) , el depósito de aire sólo puede cargarse durante la función de frenado de un vehículo en movimiento. Esta limitación lleva a problemas de mantenimiento de la carga almacenada en el depósito de aire. Además, esta limitación también hace que los sistemas híbridos de aire de técnicas anteriores sólo sean aplicables para el movimiento de vehículo, y no resulten prácticos para las aplicaciones estacionarias tales como los generadores estacionarios.

En la WO 2004/072448 se presenta un motor que incluye las funciones que precaracterizan la Reivindicación 1

RESUMEN DE LA INVENCIÓN

En la presente invención se combinan las funciones del motor de ciclo dividido con el depósito... [Seguir leyendo]

 


Reivindicaciones:

1. Un motor híbrido de aire de ciclo dividido (10, 74, 80, 84, 89, 94) que comprende:un cigüeñal (18) que gira alrededor de un eje del cigüeñal (20) ;

un pistón mecánico (24) que es recibido de forma deslizante dentro de un cilindro mecánico (14) y se conecta de forma operativa al cigüeñal (18) de modo que el pistón mecánico (24) oscile a través de una carrera de expansión (o de trabajo) y una carrera de escape durante una sola rotación del cigüeñal (18) ; un pistón de compresión (26) que es recibido de forma deslizante dentro de un cilindro de compresión (16) y se conecta de forma operativa al cigüeñal (18) de modo que el pistón de compresión (26) oscile a través de una carrera de

admisión y una carrera de compresión durante una sola rotación del cigüeñal (18) ; y un depósito de aire (36) conectado de forma operativa entre el cilindro de compresión (16) y el cilindro mecánico (14) y que se puede operar de forma selectiva para que reciba el aire comprimido del cilindro de compresión (16) y para que suministre aire comprimido al cilindro mecánico (14) para su uso en la transmisión de energía al cigüeñal (18) durante el funcionamiento del motor; y unas válvulas (46, 50, 58, 82, 100, 102) que controlan selectivamente el flujo de gas que

entra y sale de los cilindros de compresión (16) y de trabajo (14) y del depósito de aire (36) de modo que el motor pueda funcionar en un modo de potencia de aire precomprimido (PAP) , en donde en el modo PAP: el cilindro mecánico (14) recibe el aire comprimido del depósito (36) al inicio de una carrera de expansión del pistón mecánico (24) que se mezcla con el combustible durante la misma carrera de expansión y el combustible se enciende, se quema y se expande en la misma carrera de expansión, transmitiendo energía al cigüeñal (18) .

2. Un motor (10, 74, 80, 84, 89, 94) conforme a la reivindicación 1 configurado de modo que en el modo PAP, se evita que el aire comprimido procedente del cilindro de compresión (16) entre en el depósito de aire (36) .

3. Un motor (10, 74, 80, 84, 89, 94) conforme a cualquiera de las reivindicaciones precedentes que, durante un

funcionamiento en modo PAP, el combustible es encendido dentro de un ángulo del cigüeñal de 5 a 40 grados después de que el pistón mecánico (24) haya alcanzado su posición de punto muerto superior.

4. Un motor (10, 74, 80, 84, 89, 94) conforme a la reivindicación 3 que, durante el funcionamiento en modo PAP, el

combustible es encendido dentro de un ángulo del cigüeñal de 10 a 30 grados después de que el pistón mecánico (24) haya alcanzado su posición de punto muerto superior.

5. Un motor (10) conforme a cualquiera de las reivindicaciones precedentes en donde el depósito de aire (36) comprende un conducto de gas dimensionado de modo que sea capaz de recibir y almacenar el aire comprimido procedente de una pluralidad de carreras de compresión, en donde el conducto de gas interconecta los cilindros de

compresión (16) y de trabajo (14) , e incluye una válvula de admisión (46) y una válvula de escape (50) que definen una cámara de presión entre ellas.

6. Un motor (74, 80, 84, 89) conforme a cualquiera de las reivindicaciones 1 a 4 que incluye un conducto de gas (76) que interconecta los cilindros de compresión (16) y de trabajo (14) , y cuyo conducto de gas (76) incluye una válvula de

admisión (46) y una válvula de escape (50) que definen una cámara de presión entre ellas; en donde el depósito de aire (36) queda conectado a través de un conducto del depósito (78) a la cámara de presión en un lugar entre medio de la válvula de admisión (46) y la válvula de escape (50) .

7. Un motor (80, 84, 89) conforme a la reivindicación 6 que incluye una válvula de control del depósito (82) en el conducto del depósito (78) .

8. Un motor (84) conforme a la reivindicación 7 y en donde el depósito de aire es un acumulador (86) adaptado para mantener una presión relativamente constante en el interior del mismo dentro de un intervalo de presión predeterminado.

9. Un motor (89) conforme a cualquiera de las reivindicaciones 6 a 8 que incluye múltiples pares de cilindros de compresión (16) y de trabajo (14) interconectados a través de unos conductos de gas (76) que incluyen unas cámaras de presión, en donde todas las cámaras de presión están conectadas a un depósito de aire común (92) .


 

Patentes similares o relacionadas:

Motor de gasolina con cilindros secundarios, del 10 de Julio de 2019, de Bauer, Gerd: Motor que comprende al menos un cilindro de trabajo , que tiene válvulas y/o boquillas para la alimentación e inyección de combustible y aire y para la salida de gases […]

Válvula de transferencia de corredera de carrete en motor de ciclo dividido, del 14 de Febrero de 2019, de Tour Engine, Inc: Un motor de ciclo dividido que comprende: un primer cilindro que alberga un primer pistón , en donde el primer pistón realiza una carrera de […]

Motor de combustión interna, con dos cigüeñales unidos, y varios cilindros, y procedimiento de funcionamiento, del 24 de Septiembre de 2018, de PALOMO GARCIA,MELITON: Motor de combustión interna de varios cilindros que contiene dos grupos de cilindros en un solo bloque; uno, el grupo de potencia, compuesto por varios cilindros, y otro, el […]

Motor híbrido de aire de ciclo dividido, del 8 de Agosto de 2012, de SCUDERI GROUP LLC: Un motor que comprende: un cigüeñal que gira alrededor de un eje del cigüeñal ; un pistón de trabajo que es recibido de forma deslizante […]

MOTOR DE CUATRO TIEMPOS DE CICLO DIVIDIDO, del 24 de Enero de 2011, de SCUDERI GROUP LLC: Un motor que comprende: un cigüeñal que gira alrededor de un eje del cigüeñal ; un pistón de expansión que es recibido por deslizamiento […]

Imagen de 'MOTOR DE CUATRO TIEMPOS DE CICLO DIVIDIDO'MOTOR DE CUATRO TIEMPOS DE CICLO DIVIDIDO, del 19 de Enero de 2011, de SCUDERI GROUP LLC: Un motor que comprende: un cigüeñal , que gira sobre un eje de cigüeñal del motor ; un pistón de expansión que es recibido […]

Imagen de 'MOTOR DE CUATRO TIEMPOS DE CICLO DIVIDIDO'MOTOR DE CUATRO TIEMPOS DE CICLO DIVIDIDO, del 4 de Enero de 2010, de SCUDERI GROUP LLC: Un motor que comprende: un cigüeñal , girando sobre un eje del cigüeñal del motor ; un pistón de expansión recibido por deslizamiento […]

Imagen de 'MOTOR DE COMBUSTION'MOTOR DE COMBUSTION, del 28 de Octubre de 2010, de SCHABINGER, GUNTER W: Máquina de combustión interna de cuatro tiempos con al menos un cilindro con una culata , así como al menos un árbol de levas , un engrase a presión en circuito cerrado […]

Utilizamos cookies para mejorar nuestros servicios y mostrarle publicidad relevante. Si continua navegando, consideramos que acepta su uso. Puede obtener más información aquí. .