"COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES".

Los cables eléctricos destinados a trabajar en condiciones extremas de calor y temperaturas son propensos a la degradación y/o destrucción de sus capas protectoras,

motivo por el cual es de suma importancia por motivos de seguridad que las mismas estén fabricadas con materiales resistentes al fuego, retardadores del mismo en caso de incendio. La presente invención propone la obtención de un cable de energía y/o telecomunicación, que comprende al menos: un elemento conductor eléctrico y/o óptico, recubierto de al menos una capa eléctricamente aislante, pudiendo también comprender una cubierta de protección envolviendo uno o varios elementos conductores aislados, con la particularidad que la cubierta y/o aislamiento del cable comprende:

a) Un polímero orgánico extruíble o la mezcla de varios polímeros orgánicos extruíbles;

b) Un fosfato inorgánico ordenado jerárquicamente sobre filosilicatos; y

c) Otras cargas inorgánicas secundarias.

Tipo: Patente de Invención. Resumen de patente/invención. Número de Solicitud: P201132090.

Solicitante: GRUPO GENERAL CABLE SISTEMAS, S.A..

Nacionalidad solicitante: España.

Inventor/es: ALONSO SASTRE, CARLOS, POVEDA BERNAL,JESUS, MARTINEZ AGEA,Juan de Dios, BARBETA ESTRADA,Javier, CALVERAS IBAÑEZ,Daniel, GARCÍA LÓPEZ,David.

Fecha de Publicación: .

Clasificación Internacional de Patentes:

  • H01B3/12 ELECTRICIDAD.H01 ELEMENTOS ELECTRICOS BASICOS.H01B CABLES; CONDUCTORES; AISLADORES; ,o EMPLEO DE MATERIALES ESPECIFICOS POR SUS PROPIEDADES CONDUCTORAS, AISLANTES O DIELECTRICAS (empleo por las propiedades magnéticas H01F 1/00; guías de ondas H01P). › H01B 3/00 Aisladores o cuerpos aislantes caracterizados por el material aislante; Empleo de materiales por sus propiedades aislantes o dieléctricas. › cerámicas.
  • H01B7/295 H01B […] › H01B 7/00 Conductores o cables aislados caracterizados por su forma. › utilizando material resistente al fuego.

PDF original: ES-2415557_A1.pdf

 


Fragmento de la descripción:

Composición ceramificable para cables de energía y/o telecomunicaciones.

Objeto de la Invención:

Más concretamente la invención se refiere a un cable de energía y/o telecomunicaciones, que comprende por lo menos una capa extruída que le permite soportar condiciones térmicas extremas, mediante la utilización de un recubrimiento del conductor.

Estado de la Técnica:

Existen en el mercado, y por tanto pueden considerarse como estado de la técnica de la presente invención, cables de seguridad aumentada, en los que la capa de recubrimiento del conductor se aplica típicamente pero no exclusivamente, a los cables de seguridad y alta seguridad, o sea cables de energía y/o telecomunicaciones no propagadores del incendio, o bien cables destinados a mantenerse en servicio durante un tiempo definido mientras son sometidos a fuertes calores o directamente al fuego. En anteriores invenciones, por ejemplo en la solicitud internacional PCT no. WO 2006/000468 A2, se menciona la mejora a la resistencia al fuego, por ejemplo con compuestos de cubierta y/o aislamiento que utilizan filosilicatos, con o sin modificación orgánica para mejorar su compatibilidad con las matrices orgánicas.

A día de hoy, uno de los desafíos más importantes de la industria del cable es la mejora del comportamiento y las prestaciones de los cables en condiciones extremas, como las que se encuentran dentro de un incendio. Por razones esencialmente de seguridad, es indispensable maximizar las capacidades de retardar la propagación de la llama por una parte, y resistir el fuego por la otra con el fin de asegurar su funcionamiento.

Debe de tenerse en cuenta que una relantización de la propagación de las llamas, es un tiempo ganado para evacuar el lugar o para poner medios de extinción. En cables resistentes al fuego, en caso de incendio, deben poder resistir un fuego para seguir prestando servicio y además limitar su degradación. Además, un cable de seguridad no debe ser peligroso para el medio ambiente, es decir, no debe desprender humos tóxicos y/u opacos mientras es sometido a condiciones térmicas extremas. Por esta razón, durante los últimos años se están utilizando cada vez con más asiduidad cables libres de halógenos.

Los cables de seguridad aumentada están constituidos esquemáticamente por al menos un elemento conductor, eléctrico u óptico, envuelto al menos por una capa eléctricamente aislante. El cable puede tener también una cubierta de protección envolviendo uno o varios elementos conductores aislados.

Finalidad de la Invención:

El objeto de la presente invención es paliar los inconvenientes de las soluciones del estado de la técnica. Actualmente los cables no propagadores del incendio libres de halógenos están basados en el uso de compuestos ignífugos con cargas inorgánicas tipo hidróxidos metálicos comúnmente utilizados entre el 50 y 70 % en peso con los problemas de proceso y bajas propiedades mecánicas asociados. Estos sistemas de ignifugación crean una capa de carbonilla que carece de estabilidad adecuada para un rendimiento óptimo. Además, en algunos cables críticos no se consigue pasar el ensayo de no propagación del fuego. En referencia a los cables resistentes al fuego, actualmente se utilizan básicamente dos tecnologías: por un lado la utilización de cintas de mica aplicadas directamente sobre el conductor, proceso lento y muy caro, y por el otro lado la extrusión de un caucho de silicona que actúa de aislamiento (materiales caros y además su extrusión es compleja) .

Descripción de la Invención:

La solución planteada según la presente invención es la obtención de un cable de energía y/o telecomunicación, que comprende al menos: un elemento conductor eléctrico y/o óptico, recubierto de al menos una capa eléctricamente aislante, pudiendo también comprender una cubierta de protección envolviendo uno o varios elementos conductores aislados, con la particularidad que la cubierta y/o aislamiento del cable comprende:

a) Un polímero orgánico extruíble o la mezcla de varios polímeros orgánicos extruíbles, que pueden ser termoplásticos o elastoméricos;

b) Un fosfato inorgánico ordenado jerárquicamente sobre filosilicatos; y

c) Otras cargas inorgánicas secundarias, comprendiendo como mínimo uno de los siguientes elementos o bien una mezcla de dos o más de estos elementos: hidróxidos metálicos, óxidos metálicos, caolines, sílices, boratos, estannatos, molibdatos, grafitos, y/o vidrios.

Apartado "a" - El polímero orgánico: El polímero orgánico a utilizarse (puede ser muy variado, tal y como se conoce en el estado de la técnica. Básicamente será/n extruible/s y puede ser termoplástico o elastomérico. El polímero orgánico puede ser un solo polímero o bien la mezcla de varios polímeros orgánicos, y preferentemente son: olefínicos, polímeros de vinilo, acrilatos, y/o metacrilatos.

Son preferibles los polímeros olefínicos, ya sea uno o una combinación de los siguientes elementos: homopolímeros, o copolímeros de etileno y/o de propileno, o sus mezclas. También pueden ser poliésteres, poliéteres, copolímeros poliéster poliéter y/o sus mezclas.

Ejemplos de estos polímeros orgánicos que se han probado que funcionan adecuadamente para la presente invención son los siguientes elementos, solos o bien combinándolos entre sí: polietileno (PE) ; polypropileno (PP) ; copolímeros de propileno-etileno termoplásticos; cauchos de etileno-propileno (EPR) o etileno-propileno-dieno (EPDM) ; cauchos naturales; cauchos butílicos; copolímeros de etileno-vinilacetato (EVA) ; copolímeros de etilenoetilacrilatos (EEA) ; copolímeros de etileno-butilacrilato; y/o copolímeros etileno-alfa olefínicos.

Apartado "b" - El fosfato inorgánico ordenado jerárquicamente sobre filosilicatos: Este tipo de materiales, en especial los basados en filosilicatos pseudolaminares, como son la sepiolita y atapulgita, permiten mejorar de una forma notable e inesperada el comportamiento a la llama y la temperatura cuando se incorporan a una matriz polimérica. Estos materiales pueden incorporarse y dispersarse adecuadamente en estas matrices poliméricas para obtener una dispersión homogénea a través del polímero, evitando su aglomeración. Además, al aumentar la temperatura como resultado del fuego, se produce una reacción de polimerización que da lugar a la formación de una barrera protectora más consistente y homogénea que las capas de carbonilla obtenida con los retardantes de llama tradicionales. Por consiguiente, el empleo de estas estructuras jerárquicamente ordenadas de fosfatos inorgánicos como por ejemplo, fosfato de aluminio, sobre filosilicatos y, en especial, sobre sepiolita o atapulgita, corrige el problema existente de la falta de rigidez y firmeza del residuo carbonoso generado. La carbonilla actúa como barrera protectora, limitando la transferencia de calor en el material, la volatilización de los productos de degradación y la difusión del oxígeno necesario para producir y mantener dicha combustión. Durante el periodo de combustión genera un polímero inorgánico, cuya red da lugar a una capa protectora con carácter ceramificable, la cual posee excelentes propiedades mecánicas de rigidez y compactación, originando una magnífica resistencia a la llama así como notables propiedades dieléctricas.

El catión del fosfato inorgánico puede ser: Al, Zn, Cd, Fe, Sn, Mn, Ni, Co, B, Sb, W, Mo, Zr, Cu, Ga, In, Be, Mg, Ca, Sr, Ba, NH4OH, Na, Li, K, Rb, Cs y sus mezclas.

El filosilicato será de tipo 2:1 de morfología laminar o acicular. Concretamente una esmectita de tipo montmorillonita, saponita, estevensita, beidellita, nontronita, hectorita o una mezclas de las mismas, siendo preferibles la esmectita dioctaédrica, esmectita trioctaédrica, sepiolita, atapulgita o una mezcla de las mismas.

La mencionada sepiolita preferentemente es una sepiolita de grado reológico.

La mencionada atapulgita preferentemente es una atapulgita de grado reológico.

Una de las novedades de la presente invención y que se demuestra clave para la mejora del comportamiento en los ensayos de fuego tanto de propagación como de resistencia es la utilización de estos fosfatos inorgánicos ordenados jerárquicamente sobre filosilicatos. Las cantidades en partes por peso de 100 partes de polímero está comprendida entre 1 y 150, siendo especialmente utilizables de 5 a 30.

Apartado "c" - Otras cargas inorgánicas secundarias: Otras cargas inorgánicas secundarias como hidróxidos metálicos, óxidos metálicos, caolines, sílices, boratos, estannatos, molibdatos, grafitos, vidrios, todas ellas utilizadas y conocidas por los expertos en formulación de compuestos para... [Seguir leyendo]

 


Reivindicaciones:

1ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” de los clasificados como de seguridad aumentada es decir no propagadores del incendio y/o resistentes al fuego con capacidad de soportar condiciones térmicas extremas, comprendiendo uno o más conductores eléctricos y/o ópticos recubiertos de al menos una capa eléctricamente aislante, pudiendo también comprender una cubierta de protección envolviendo uno o varios elementos conductores aislados, caracterizada en que la cubierta y/o aislamiento del cable comprende:

a) un polímero orgánico extruíble o la mezcla de varios polímeros orgánicos extruíbles que pueden ser termoplásticos o elastoméricos; y

b) un fosfato inorgánico jerárquicamente ordenado sobre filosilicatos; y

c) otras cargas inorgánicas secundarias, que comprende como mínimo uno de los siguientes elementos o bien una mezcla de dos o más de estos elementos: hidróxidos metálicos, óxidos metálicos, caolines, sílices, boratos, estannatos, molibdatos, grafitos, y/o vidrios.

2ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 1ª reivindicación, caracterizada en que el polímero o los polímeros orgánicos puede/n ser: olefínicos, polímeros de vinilo, acrilatos, y/o metacrilatos.

3ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 2ª reivindicación, caracterizada en que los polímeros olefínicos comprenden uno o una combinación de los siguientes elementos: homopolímeros, copolímeros de etileno y/o de propileno, poliésteres, poliéteres, copolímeros poliéster poliéter, y/o sus mezclas.

4ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 3ª reivindicación, caracterizada en que los polímeros orgánicos son los siguientes elementos solos o combinándolos entre sí: polietileno (PE) ; polypropileno (PP) ; copolímeros de propileno-etileno termoplásticos; cauchos de etileno-propileno (EPR) o etileno-propileno-dieno (EPDM) ; cauchos naturales; cauchos butílicos; copolímeros de etileno-vinilacetato (EVA) ; copolímeros de etileno-etilacrilatos (EEA) ; copolímeros de etilenobutilacrilato; y/o copolímeros etileno-alfa olefínicos.

5ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 1ª reivindicación, caracterizada en que el catión del fosfato inorgánico puede ser: Al, Zn, Cd, Fe, Sn, Mn, Ni, Co, B, Sb, W, Mo, Zr, Cu, Ga, In, Be, Mg, Ca, Sr, Ba, NH4OH, Na, Li, K, Rb, Cs y sus mezclas.

6ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 1ª reivindicación, caracterizada en que el filosilicato es un filosilicato tipo 2:1 de morfología laminar o acicular.

7ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 6ª reivindicación, caracterizada en que el filosilicato de tipo 2:1 es una esmectita dioctaédrica, esmectita trioctaédrica, sepiolita, atapulgita o una mezcla de los mismos.

8ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 7ª reivindicación, caracterizada en que la esmectita es de tipo montmorillonita, saponita, estevensita, beidellita, nontronita, hectorita o una mezcla de los mismos.

9ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 7ª reivindicación, caracterizada en que la sepiolita es una sepiolita de grado reológico.

10ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 7ª reivindicación, caracterizada en que la atapulgita es una atapulgita de grado reológico.

11ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 1ª reivindicación, caracterizada en que las cantidades de fosfato inorgánico jerárquicamente ordenado en filosilicatos en partes por peso de 100 partes de polímero está comprendida entre 1 y 150, siendo especialmente utilizables de 5 a 30.

12ª - “COMPOSICIÓN CERAMIFICABLE PARA CABLES DE ENERGÍA Y/O TELECOMUNICACIONES” según la 1ª reivindicación, caracterizada en que las cantidades de otras cargas inorgánicas secundarias en partes por peso de 100 partes de polímero van de 1 a 650, siendo especialmente utilizables de 100 a 200 phr.


 

Patentes similares o relacionadas:

Cable óptico resistente al fuego, del 17 de Junio de 2020, de PRYSMIAN S.P.A.: Un cable óptico resistente al fuego que comprende: una pluralidad de fibras ópticas ; al menos una capa tubular […]

Separador de polímero espumado para cableado, del 6 de Mayo de 2020, de GENERAL CABLE TECHNOLOGIES CORPORATION: Un separador de cables que comprende: un cuerpo preformado que tiene una longitud longitudinal donde dicho cuerpo preformado está formado sustancialmente […]

Separadores de policarbonato espumado y cables de los mismos, del 25 de Marzo de 2020, de GENERAL CABLE TECHNOLOGIES CORPORATION: Un cable de comunicación que comprende un separador de cables, comprendiendo el separador de cables un cuerpo extruido que se extiende a lo largo […]

Cable resistente al fuego con capa ceramificable, del 18 de Marzo de 2020, de PRYSMIAN S.P.A.: Un cable resistente al fuego que comprende: un elemento conductor ; 21); una capa, que rodea al elemento conductor, hecha de una composición ceramificable […]

Sistema de cable resistente al fuego, del 4 de Marzo de 2020, de PRYSMIAN S.P.A.: Un sistema de cable resistente al fuego que comprende un cable eléctrico alojado en un conducto de resina termoendurecible reforzada con fibra de vidrio, en el […]

Poliuretano termoplástico ignífugo, del 26 de Febrero de 2020, de BASF SE: Composicion que contiene al menos un poliuretano termoplastico TPU-1, a base de un diisocianato alifatico, al menos un hidroxido metalico y al menos un […]

Poliuretano termoplástico ignífugo, del 12 de Febrero de 2020, de BASF SE: Composicion que contiene por lo menos un poliuretano termoplastico, por lo menos un polimero elegido de entre el grupo consistente en copolimeros de etileno-vinilacetato, […]

Cable eléctrico resistente al fuego, del 23 de Octubre de 2019, de PRYSMIAN S.P.A.: Cable eléctrico resistente al fuego de media y alta tensión , que comprende: - un conductor ; - una primera capa semiconductora […]

Utilizamos cookies para mejorar nuestros servicios y mostrarle publicidad relevante. Si continua navegando, consideramos que acepta su uso. Puede obtener más información aquí. .